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1. Prove that U× U is a proper class.

Proof. This class is a class of pairs: A Relation.

Suppose this Relation is a SET.

Then via a theorem from Notes/Class, dom(U× U) = U is a SET. But we know that U is a

proper class, which goes against assumption that starts with “Suppose”. Done. □

2. Prove that if B is finite and A ⊆ B, then A is also finite.

Proof.

(a) Case where B = ∅. Then A = ∅ since this is the only subset of ∅. By definition then, A is
finite.

(b) Case where B
f∼{0, 1, 2, . . . , n}, that is

f : B → {0, . . . , n} is a 1-1 correspondence

Define the restriction of f on A —we will call it f ′— for all x ∈ A, by

f ′(x) = f(x) (1)

� f ′ is NOT defined on the rest of B, namely on B −A. �
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Since f is total on B and thus defined everywhere in A, f ′ is total on A. f ′ is also 1-1 since
xf ′y ∧ zf ′y implies xfy ∧ zfy by (1). Now f being 1-1 implies x = z and thus f ′ is 1-1.

We have many times said (and shown why) that every function is onto its range. Thus
f ′ : A → ran(f ′) is a 1-1 correspondence

A ∼ ran(f ′) (2)

Next we note that ran(f ′) is finite: Indeed, arguing by contradiction, if ran(f ′) is
infinite, then —from ran(f ′) ⊆ {0, 1, . . . , n} ⊆ N, and a theorem from Notes/class,

ran(f ′) ∼ N (3)

Let g : ran(f ′) → N effect this 1-1 correspondence. The function h : B → N given by

h(x) =

{
g(x) if x ∈ ran(f ′)

↑ if x ∈ B − ran(f ′)

is onto N contradicting a theorem from class/Notes.

We conclude that ran(f ′) ∼ {0, 1, . . . , r} for some r —i.e., is finite— and combining with
(2) we have A ∼ ran(f ′) ∼ {0, 1, . . . , r}. Hence A ∼ {0, 1, . . . , r} by ∼-transitivity. A is
finite! Done. □

3. Prove that an enumerable set is infinite.

Proof. Let A ∼ N which is saying “A is enumerable” mathematically.

If A is also finite then {0, 1, . . . ,m} ∼ A for some m ∈ N. Thus

{0, 1, . . . ,m} ∼ A ∼ N

Hence (transitivity of ∼) we have
{0, 1, . . . ,m} ∼ N

which implies an onto function (the 1-1 correspondence “∼”)

{0, 1, . . . ,m} → N

But our Notes say that this is impossible! □

4. Let A be enumerable. Show how —given an enumeration of A without repetitions— you can
construct a NEW enumeration where EACH x ∈ A is enumerated infinitely many times.

Proof. Let
a0, a1, a2, . . . , ai, . . . (1)

be an enumeration without repetitions.
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Form the infinite “square” matrix whose every row is the same as the sequence (1). Then traverse
it with SE arrows as in the display below.

a0 a1 a2 a3 . . .
↗ ↗ ↗

a0 a1 a2
↗ ↗

a0 a1
↗

a0
...

The above matrix includes each ai infinitely many times (for each n, column n has all its entries
equal to an). All these will be enumerated in the SE enumeration depicted above. Done. □

5. Prove that ⊢ (∀x)A → (∃x)A.

Proof. By DThm, prove instead
⊢ (∀x)A ⊢ (∃x)A

1) (∀x)A ⟨hyp from DThm⟩
2) A ⟨1 + Spec⟩
3) (∃x)A ⟨2 + Dual Spec⟩

□

6. Prove that ⊢ (∀x)(A → B) → (∃x)A → (∃x)B.

Proof. By DThm, prove instead

(∀x)(A → B) ⊢ (∃x)A → (∃x)B

and once more by DThm do instead:

(∀x)(A → B), (∃x)A ⊢ (∃x)B

Here it goes:

1) (∀x)(A → B) ⟨hyp from DThm⟩
2) (∃x)A ⟨hyp from DThm⟩
3) A[c] ⟨Aux. Hyp for 2; c is not in concl. nor in 1 +2⟩
4) A[c] → B[c] ⟨1 + Spec⟩
5) B[c] ⟨3 + 4 + MP⟩
6) (∃x)B[x] ⟨5 + Dual Spec⟩

□
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7. Use simple induction to prove that n+ 10 < 3n, for n ≥ 3.

Proof.

Basis. n = 3. To verify 3 + 10 < 27. True!

I.H. Fix n ≥ 3 and Assume

n+ 10 < 3n

for that n.

I.S. Prove

n+ 1 + 10 < 3n+1

Here:

n+ 11 < 3n+ 30, recall, n ≥ 3

<
(
3n

)
3, multiplying both sides of I.H. by 3

= 3n+1

□

8. Consider the statement (formula)

(∃x)A(x) → A(c) (1)

where c is a new constant, NOT found in A(x).

Find now a specificSIMPLE example of A(x) over the set N and choose a specific
value of c ∈ N so that (1) becomes false, and Therefore we cannot prove (1), since proofs
start from true axioms and preserve truth at every step.

Proof. Since c is NOT specified by “(∃x)A(x)” in any shape or form, I am
free to take the special case below (over our familiar N) and I choose, unimaginatively
(:-), the constant “c” to be 42. I choose for “A(x)” the formula x = 0.

So statement (1) becomes
t︷ ︸︸ ︷

(∃x)x = 0 →
f︷ ︸︸ ︷

42 = 0 (2)

The rhs of → in (2) is false. Hence makes the whole simplified formula false. So (1) cannot be
an always true formula of Logic! □

9. Define the closure Cl(I,O) by the specifications

(a) I = {2}
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(b) The ONLY operation in O is
(x, y) 7→ x+ y (1)

That is, if the operation gets input x and y it produces output x+ y.

Prove by induction on Cl(I,O) that all its members are even natural numbers.

Proof. The property of members x of Cl(I,O) that I am asked to prove is “x is even”.

Basis. Verify for members of I. There is ONLY ONE member in this set, namely, the number
2. This IS EVEN!

Prove that the property propagates by the only rule, (1):

So, say the inputs x and y of (1) are even, 2n and 2m respectively.

Then so is the output of rule (1), because x+ y = 2n+ 2m = 2(n+m). DONE! □

10. Using Simple Induction (SI) prove that 13 + 23 + . . .+ n3 =

[
n(n+ 1)

2

]2
, for n ≥ 1.

Proof.

Basis. n = 1. Verify: lhs = 13 = 1. rhs =
(
(1× 2)/2

)2

= 12 = 1. Good!

I.H. Fix n ≥ 1 and Assume

13 + 23 + . . .+ n3 =

[
n(n+ 1)

2

]2
(1)

I.S. Prove for the n we fixed in the I.H. that

13 + 23 + . . .+ n3 + (n+ 1)3 =

[
(n+ 1)(n+ 2)

2

]2
(2)

Here it goes:

13 + 23 + . . .+ n3 + (n+ 1)3
I.H.
=

[
n(n+ 1)

2

]2
+ (n+ 1)3

= (n+ 1)2
[n
2

]2
+ (n+ 1)3

= (n+ 1)2
[
n2/4 + (n+ 1)

]
= (n+ 1)2

[
n2 + 4n+ 4

4

]
= (n+ 1)2

[
(n+ 2)2

4

]
=

[
(n+ 1)(n+ 2)

2

]2

□
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