
 
Perform the following groups of tasks: 
 

LabC1.s 
 
1. Create a directory to hold the files for this lab. 
 
2. Create and run the following two Java classes: 
 

public class IntegerMath 
{ 
 public static final int MAX_VALUE = 2147483647; 
 public static final byte SIZE = 32; 
 private static int count = 0; 
} 
________________________________________________________ 
 
public class IntegerMathClient 
{ 
 public static void main(String[] args) 
 { 
  System.out.print(IntegerMath.MAX_VALUE); 
  System.out.print(IntegerMath.SIZE); 
 } 
} 

 
The first is a utility (i.e. all features are static) which serves as a library. The second 
is an app that uses the library. We will expand both as we progress through these 
tasks.  We seek to explore how such classes are translated. 

 
3. Launch your favourite editor and create LabC1.s as follows: 
 

 .globl MAX 
 .globl SIZE 
 #----------------------------- 
 .data 
MAX: .word 2147483647; 
SIZE: .byte 32; 
count: .word 0 
 #----------------------------- 
 .text 

 
This is a translation of IntegerMath: the top section specifies which names are 
public; the data segment declares the static attributes and their initial values; and 
the text segment (where the methods will reside) is currently empty. 

 

LAB C 

Translating Utility Classes 



2 Lab C  HR/W09 

4. Open LabC1.s in SPIM and observe the contents of the data pane. It displays a hex 
dump of memory in word format beginning at address at 0x10000000 (i.e. 256 MB):  

 
[0x10010000]   0x7fffffff  0x00000020  0x00000000  0x00000000 

 
The bracketed numbers are addresses whereas the remaining numbers are contents 
of the addresses. Hence, the above dump indicates that if we look at DRAM starting 
at address 0x10010000 we will see the four shown words.   

 
5. The first word contains 0x7fffffff, i.e. 32 bits all of which are 1 except the MSb. 

This is the largest 32-bit signed integer, and we recognize it as the value of the MAX 
field of our utility. We therefore conclude that MAX is stored in memory in a block that 
begins at address 0x10010000; i.e. its four bytes are stored at the four consecutive 
addresses: 0x10010000, 0x10010001, 0x10010002, and 0x10010003. 
 

6. The second word contains 0x00000020. Note that SPIM (and most other debugging 
tools) dumps the content as words even though the data may not be. Indeed, the 2nd 
field, SIZE, is a byte. Assuming a little-endian machine (i.e. the LSB is at the lowest 
address), we see that the byte at address 0x10010004 contains 0x20, or 32, which 
is indeed the value of SIZE. 

 
7. The next attribute in our class is count and it is declared as an int (4 bytes or one 

word).  Hence, based on alignment rules, it can only be stored at an address that is 
divisible by 4. The next free address (after SIZE) is 0x10010005 but it is clearly not a 
multiple of 4. Hence, we must skip the three bytes at 0x10010005, 0x10010006, and 
0x10010007 and store count at 0x10010008. 

 
8. Explore changing the values of the three attributes; re-ordering their declarations; 

and adding a few more attributes. Open the modified program in SPIM after each 
such modification and observe the data segment. Make sure you are comfortable 
with the hex dump, the word format, and the alignment issue. 

 
9. Explore adding an attribute of type half using the .half directive. This type is 2B 

wide (and, hence, must align to even addresses) and corresponds to Java’s short 
integers (if signed) and char ones (if unsigned). 

 
10. We mention, for completeness, two other possible directives: .float and .double. 

They correspond to Java’s float and double real numbers. 
 

LabC1Client.s 
 
11. Create the program LabC1Client.s that translates the IntegerMathClient app. It 

is intended to use the services of LabC1.s created above. Note that even though the 
two programs are written (and compiled) independently, they will be linked / loaded 
when the app is launched. 
 

12. Our program needs to access data in memory. To do that, it must use the load/store 
family of the MIPS instruction set. The family contains instructions to load and store 
words (lw and sw), half words (lh and sh), and bytes (lb and sb). 

 



HR/W09 Lab C 3 

13. Write the client as shown below: 
 

  .text 
 main: lw $a0, MAX($0) 
  addi $v0, $0, 1 
  syscall 
  
  lbu $a0, SIZE($0) 
  addi $v0, $0, 1 
  syscall 
  
  jr $ra 

 
The load / store instructions use an array-like syntax to address memory operands: 
you provide an immediate (a label or a hard-coded constant) followed by a register 
between two parentheses. The immediate acts as a base address and the register 
plays the role of an index. The CPU adds the immediate to the content of the register 
and interprets the sum as the address of the data. 

 
14. Launch SPIM and open LabC1.s and then LabC1Client.s. When you open two (or 

more) programs without clearing the contents in between the open’s, SPIM conso-
lidates the programs by merging their text and data segments. As a result, you will 
see only one text and one data segment in the end.  

 
15. Run the program. Note that regardless of how many programs are loaded into SPIM, 

only one of them has a main label, and it is that one that starts when we run. 
 

16. Examine the output and make sure it is what you expect. 
 

17. To improve readability, modify LabC1Client so it prints a new line in between its two 
outputs; i.e. as if we replaced the first print in the Java source with println.  

 
LabC2 and its Client 

 
18. Save LabC1.s as LabC2.s but replace 32 with -32 as the value of SIZE. Also save 

LabC1Client.s as LabC2Client.s. 
 

19. Load LabC2 and its client in SPIM and run. The output is not what one would expect 
from the Java perspective. Explain. 

 
20. Unlike all the other instructions in the load / store family, lb and lh store a piece of 

data represented in less than 32 bits in a register that is 32-bit wide. Because of this, 
the issue of zero versus sign extension comes into play. Fix the bug in LabC2Client 
based on your understanding of this issue and the u suffix. 

 
21. Examine the text segment of LabC2Client, and in particular, the first lw at (or near) 

address [0x0040002c]. The text pane shows that SPIM did not handle this is a single 
instruction but rather as two: 

 
  lui  $1, 4097 
  lw  $4, 0($1) 

 



4 Lab C  HR/W09 

Why is that?  We found earlier that MAX is stored at address 0x10010000. We there-
fore expect SPIM to simply replace the symbolic reference to MAX with 0x10010000; 
i.e. replace: 

 
  lw $a0, MAX($0) 

  
with (given that register $a0 is the nickname of $4): 

 
  lw  $4, 0x10010000($0) 

 
Explain why the above did not occur and why two instructions were used instead. 

 
22. Recall that the immediate in any (non-jump) instruction can only be 16-bit wide. If a 

larger immediate must be used then we must break into two pieces and arrange to 
assemble them back together. Does this explain SPIM’s action? 

 
23. Note that SPIM used register $1 for the replacement. Could it have used any other 

register? Why? 
 

LabC3 and its Client 
 
24. Save LabC2 and its client as LabC3 and its client. 
 
25. We want to modify the client so that it functions the same as before (and produces 

the same output) yet it does not refer to the SIZE symbol. This sounds impossible 
(because the program would end up outputting the value of a variable without ever 
referring to that variable) but it is doable because we know where the attributes are 
stored in memory. Specifically, remove the SIZE reference in:  

 
  lb $a0, SIZE($0) 

 
26. You know that SIZE is stored 4 bytes away from MAX. We also know that the CPU 

computes addresses by adding the immediate and the register. These observations 
lead us to explore replacing the above statement with something like this: 

 
  addi $t0, $0, 4 
  lb $a0, MAX($t0) 

 
27. Make the needed changes, load the new program pair, and run. Did you get the 

expected output? 
 
28. Notice that the above technique (of doing arithmetic on addresses) allows us not only 

to access SIZE through MAX but also to access count. This works despite the fact 
that count was declared as private. But since Java does not support any kind of 
address arithmetic (such as adding or subtracting 4), privacy of count is assured.  

 
29. Explore loading a word from an address one byte before SIZE. Based on our earlier 

findings, do you expect this word to contain 0x0000ff20?  Carry out the suggested 
change and run. Explain what you observe. 

 



HR/W09 Lab C 5 

LabC4 and its Client 
 
30. We now seek to translate the following pair of classes: 
 

public class IntegerMath 
{ 
 public static final int MAX_VALUE = 2147483647; 
 public static final byte SIZE = 32; 
 private static int count = 0; 
 
 // Accessor for the count attribute 
 public static int getCount() 
 { 
  int result = IntegerMath.count; 
  return result; 
 } 
} 
________________________________________________________ 
 
public class IntegerMathClient 
{ 
 public static void main(String[] args) 
 { 
  System.out.print(IntegerMath.MAX_VALUE); 
  System.out.print(IntegerMath.SIZE); 
  System.out.println(IntegerMath.getCount()); 
 } 
} 

 
31. Save LabC1.s as LabC4.s. Keep the data segment and its associated globl direc-

tives as before and then append with the following: 
 

 .globl getCount 
 #----------------------------- 
 .text 
getCount: #----------------------------- 
 lw $v0, count($0) 
 jr $ra 

 
32. Implementing a method is not much different from implementing a main. The last 

statement returns to the caller by jumping to the address stored in register $ra. This 
implies that the caller must have stored (in $ra) the address of the instruction that 
immediately follows the method invocation. 

 
33. Methods use the a registers to receive parameters passed to them and v registers to 

return data to the caller. This is why the above accessor uses $v0 for its return  
 

34. Save LabC1Client.s as LabC4Client.s and add to it: 
 

  jal getCount 
  add $a0, $0, $v0 
  addi $v0, $0, 1 
  syscall 

 



6 Lab C  HR/W09 

35.  The jal (Jump And Link) instruction is similar to j except it stores PC (the program 
counter register) in $ra prior to jumping. Since PC holds the address of the instruc-
tion that follows the currently executing one, the method invoked by jal will return to 
the statement that follows the call by using jr $ra. 

 
36. Note that even the main app ends with a jump to the content of $ra. This is because 

an app is in reality a method invoked by the O/S (which is SPIM in our case). 
 

37. Load the LabC4 pair and run. The system will hang!  
 

38. To understand what triggered the infinite loop, restart SPIM and re-open the LabC4 
pair but, this time, step through the program one instruction at a time. As you do, you 
will see why an infinite loop was created. 

 
39. Since all methods rely on $ra to remember the return address, we must obviously 

store the content of this register in some safe place before we invoke any method. 
This storage is typically done at the beginning of each method. The safe place is 
known as the stack. You can think of it as a system-provided array in memory with 
base address stored in $sp, the Stack Pointer register. The only peculiar aspect of 
the stack is that it grows backward, i.e. toward smaller addresses. 

 
40. Add the following instructions to the beginning of the client: 
 

 main: sw $ra, 0($sp) 
  addi $sp, $sp, -4 

 
The first instruction saves $ra at the location pointed at by $sp while the second 
decrements $sp so that any further storage to it would not overwrite $ra. We refer to 
this pair of instructions as pushing $ra into the stack. 

 
41. Add the following instructions to the end of the client: 
 

   addi $sp, $sp, 4 
   lw $ra, 0($sp) 
   jr $ra 

 
The first two instructions serve to pop the stack into $ra while the third is the usual 
return instruction. 

 
42. Now that $ra is properly saved and restored, you should be able to run the LabC4 

pair without problems. 
 
43. Note that you could also implement the push / pop mechanism within the getCount 

method; indeed, some compilers implement it in each and every method. But when a 
method does not itself invoke any other method (aka a leaf method), there is no need 
to save $ra since no instruction changes it.    

 
44. The stack is used not only to save $ra but also to save other registers that the caller 

may need. We shall see an example of this shortly.  
 



HR/W09 Lab C 7 

LabC5 and its Client 
 
45. We now seek to translate the addition of a mutator to the utility: 
 

 // Mutator for the count attribute 
 public static void setCount(int count) 
 { 
  IntegerMath.count = count; 
 } 

 
And we also need a corresponding test in the app: 

 
  System.out.println(IntegerMath.getCount()); 
  int a = new Scanner(System.in).nextInt(); 
  IntegerMath.setCount(a); 
  System.out.println(IntegerMath.getCount()); 

 
46. Save LabC4 as LabC5 and add the new method. Since the mutator has receives one 

parameter, it should expect it to be stored in $a0. 
 
47. Save LabC4Client as LabC5Client and add a translation of the above sequence. 

 
48. Run the LabC5 pair and ensure they work as expected. 
 
49. In order to make your client easier to read, you may want to add a method named 

println to LabC5. This way, whenever the client needs to print a new line, it would 
simply use: 

 
 jal println 

 
LabC6 and its Client 

 
50. We now seek to add to our utility a method similar to one in Java’s Integer class. 

Moreover we like to see the count attribute acting as a hit counter for the method; 
i.e. the method should increment count whenever it is invoked: 

 
 public static int signum(int i) 
 { 
  int result; 
  if (i < 0) 
  { 
   result = -1; 
  } else if (i == 0) 
  { 
   result = 0; 
  } else 
  { 
   result = 1; 
  } 
  IntegerMath.count++; 
  return result; 
 } 

 



8 Lab C  HR/W09 

51. Save LabC5 as LabC6 and implement signum. Note that your method may only use 
the t registers for its local variables; the a registers for parameters, and the v regis-
ters for returns. If you must make a change to any other register, you must preserve 
its value. See the notes about caller/callee saving convention at the end of this Lab. 

 
52. Save LabC5Client as LabC6Client and add to it a test that reads an integer from the 

user and then print its signum and the new value of count. 
 

53. Run your pair of programs. If the output is not what you expect, set a breakpoint or 
step through your code until you identify the problem and correct it. 

 
LabC7 and its Client 

 
54. We now seek to add the following to our utility: 
 

public static boolean isPrime(int i) 
{ 
 boolean result = true; 
 for (int candidate = 2; result && candidate < i; candidate++) 
 { 
  result = !IntegerMath.isFactor(i, candidate); 
 } 
 return result; 
} 
 
private static boolean isFactor(int n, int factor) 
{ 
 boolean result = (n % factor) == 0; 
 return result; 
} 

 
55. Save LabC6 as LabC7 and implement isPrime. Note that you must treat boolean 

as an integer with preset values for true and false. The private isFactor, for 
example, would return zero in $v0 for false and the negation of that for true. 

 
56. Note that since isPrime invokes isFactor, it cannot assume that the t registers 

will not be changed by isFactor, and hence, must push whatever it needs before 
the call pop after. In other words, when you write isPrime do not assume that you 
know the internals of isFactor; instead, treat it as a black box.  

 
57. Save LabC6Client as LabC7Client and add to it a test that reads an integer from the 

user and determines if it is prime by invoking isPrime. 
 
58. Run your pair of programs. If the output is not what you expect, set a breakpoint or 

step through your code until you identify the problem and correct it. 
 

LabC8 and its Client 
 
59. We now seek to add to our utility a method that prints an integer in decimal vertically 

(one digit per line) starting with its most significant digit. Specifically, we need to tran-
slate the following recursive method:   



HR/W09 Lab C 9 

 
 public static void printVertical(int n) 
 { 
  if (n > 0) 
  { 
   printVertical(n / 10); 
   System.out.println(n % 10); 
  } 
 } 

 
60. Save the LabC7 pair as LabC8 and implement this method along with a test.  
 



10 Lab C  HR/W09 

 
 
• As a caller, you can safely assume that the contents of all your registers will not be 

changed by the methods you call except for: $a0-$a3 (used to pass parameters and 
can conceivably be changed by the method), $v0-$v1 (used for the return(s) of the 
method and will obviously change if the method is not void), and $t0-$t9 (used as 
scratch registers by the method and may thus change).  

 
• As a callee (a method), you must ensure that the above caller’s contract will be met. 

Hence, if you plan to change any register other than the a’s, v’s, and t’s, then save 
their contents at your prologue and restore them prior to returning. 

 
• Since a non-leaf method is both a caller and a callee, it must be careful in its usage 

of the t’s. It does not need to save them for the caller's sake, but it may need to do 
so for its own sake. Data stored in them must be saved and restored before and after 
every invocation the method makes. 

 
• The very act of invoking a method automatically changes $ra. Hence, this register 

must be saved by any non-leaf method, i.e. one that invokes another. 
 
• The saving of registers, by caller or callee, is always done on the stack, a last-in-first 

out data structure that grows toward smaller addresses and whose “last” location, or 
top, is pointed at by $sp. 

 
• Don't "play it safe" by pushing all registers (or all used registers) on the stack before 

each call and popping them after. Such a conservative approach may have a severe 
impact on performance. For example, a leaf method should only push the s registers 
it uses. No other register needs to be preserved. 

 
• Since we assign a register to each variable declared in a method, all local variables 

declared in a Java method end up being effectively allocated on the stack. And since 
we pop all these values off the stack at the end of the method, the variables cease to 
exist. This means the lifetime of the method’s variables is as long as the method.     

LAB C 

Notes 


