
original German edition byUwe Sch�oningtranslated, revised, and expanded byRandall Pruim
Gems ofTheoretical Computer ScienceComputer Science { Monograph (English)August 12, 1998
Springer-VerlagBerlin Heidelberg NewYorkLondon Paris TokyoHongKong BarcelonaBudapest

Preface to Original German Edition
In the summer semester of 1993 at Universit�at Ulm, I tried out a new typeof course, which I called Theory lab, as part of the computer science majorprogram. As in an experimental laboratory { with written preparatory ma-terials (including exercises), as well as materials for the actual meeting, inwhich an isolated research result is represented with its complete proof andall of its facets and false leads { the students were supposed to prove por-tions of the results themselves, or at least to attempt their own solutions. Thegoal was that the students understand and sense \how theoretical research isdone." To this end I assembled a number of outstanding results (\highlights,"\pearls," \gems") from theoretical computer science and related �elds, in par-ticular those for which some surprising or creative new method of proof wasemployed. Furthermore, I chose several topics which don't represent a solu-tion to an open problem, but which seem in themselves to be surprising orunexpected, or place a well-known problem in a new, unusual context.This book is based primarily on the preparatory materials and worksheetswhich were prepared at that time for the students of my course and hasbeen subsequently augmented with additional topics. This book is not a textbook in the usual sense. In a textbook one pays attention to breadth andcompleteness within certain bounds. This comes, however, at the cost ofdepth. Therefore, in a textbook one �nds too often following the statement ofa theorem the phrase: \The proof of this theorem would go beyond the scopeof this book and must therefore be omitted." It is precisely this that we donot do here; on the contrary, we want to \dig in" to the proofs { and hopefullyenjoy it. The goal of this book is not to reach an encyclopedic completenessbut to pursue the pleasure of completely understanding a complex proofwith all of its clever insights. It is obvious that in such a pursuit completetreatment of the topics cannot possibly be guaranteed and that the selectionof topics must necessarily be subjective. The selected topics come from theareas of computability, logic, (computational) complexity, circuit theory, andalgorithms.Where is the potential reader for this book to be found? I believe he orshe could be an active computer scientist or an advanced student (perhapsspecializing theoretical computer science) who works through various topicsas an independent study, attempting to \crack" the exercises and by this

VImeans learns the material on his or her own. I could also easily imagineportions of this book being used as the basis of a seminar, as well as toprovide a simpli�ed introduction into a potential topic for a Diplomarbeit(perhaps even for a Dissertation).A few words about the use of this book. A certain amount of basic knowl-edge is assumed in theoretical computer science (automata, languages, com-putability, complexity) and for some topics probability and graph theory(similar to what my students encounter prior to the Vordiplom). This is verybriey recapitulated in the preliminary chapter. The amount of knowledge as-sumed can vary greatly from topic to topic. The topics can be read and workedthrough largely independently of each other, so one can begin with any of thetopics. Within a topic there are only occasional references to other topics inthe book; these are clearly noted. References to the literature (mostly articlesfrom journals and conference proceedings) are made throughout the text atthe place where they are cited. The global bibliography includes books whichwere useful for me in preparing this text and which can be recommended forfurther study or greater depth. The numerous exercises are to be understoodas an integral part of the text, and one should try to �nd one's own solu-tion before looking up the solutions in the back of the book. However, if oneinitially wants to understand only the general outline of a result, one couldskip over the solutions altogether at the �rst reading. Exercises which have asomewhat higher level of di�culty (but are certainly still doable) have beenmarked with �.For proof-reading (the original German text) and for various suggestionsfor improvement I want to thank Gerhard Buntrock, Volker Claus, Uli Her-trampf, Johannes K�obler, Christoph Meinel, Rainer Schuler, Thomas Thier-auf, and Jacobo Tor�an. Christoph Karg prepared a preliminary version ofChapter 14 as part of a course paper. Uwe Sch�oning

Preface to the English Edition
While I was visiting Boston University during the 1996{97 academic year, Inoticed a small book, written in German, on a shelf in Steve Homer's o�ce.Curious, I borrowed it for my train ride home and began reading one of thechapters. I liked the style and format of the book so much that over thecourse of the next few months I frequently found myself reaching for it andworking through one chapter or another. This was my introduction to Perlender Theoretischen Informatik.A few of my colleagues had also seen the book. They also found it inter-esting, but most of them did not read German well enough to read more thansmall portions of it enjoyably. I hope that the English version will rectify thissituation, and that many will enjoy (and learn from) the English version asmuch as I enjoyed the German version.The front matter of this book says that it has been \translated, revised,and expanded." I should perhaps say a few words about each of these tasks.In translating the book, I have tried as much as possible to retain the feelof the original, which is somewhat less formal and impersonal than a typicaltext book yet relatively concise. I certainly hope that the \pleasure of thepursuit of understanding" has not gotten lost in the translation.Most of the revisions to the book are quite minor. Some bibliographyitems have been added or updated; a number of German sources have beendeleted. The layout has been altered somewhat. In particular, references nowoccur systematically at the end of each chapter and are often annotated. Thisformat makes it easier to �nd references to the literature, while providing aplace to tie up lose ends, summarize results, and point out extensions. Speci�cmention of the works cited at the end of each chapter is made informally, if atall, in the course of the presentation. Occasionally I have added or rearrangeda paragraph, included an additional exercise, or elaborated on a solution, butfor the most part I have followed the original quite closely. Where I spottederrors, I have tried to �x them; I hope I have corrected more than I haveintroduced.While translating and updating this book, I began to consider addingsome additional \gems" of my own. I am thankful to Uwe, my colleaguesand Hermann Engesser, the supervising editor at Springer Verlag, for en-couraging me to do so. In deciding which topics to add, I asked myself two

VIIIquestions: What is missing? and What is new? From the possible answers toeach question I picked two new topics.The introduction to average-case complexity presented in Topic 25 seemedto me to be a completion (more accurately, a continuation) of some of theideas from Topic 8, where the term average-case is used in a somewhat dif-ferent manner. It was an obvious \gap" to �ll.The chapter on quantum computation (Topic 26) covers material that isfor the most part newer than the original book; indeed, several of the articlesused to prepare it have not yet appeared in print. I considered covering Shor'squantum factoring algorithm { either instead or additionally { but decidedthat Grover's search algorithm provided a gentler introduction to quantumcomputation for those who are new to the subject. I hope interested readerswill �nd Shor's algorithm easier to digest after having worked through theresults presented here. No doubt, there are many other eligible topics for thisbook, but one must stop somewhere.For reading portions of the text and providing various suggestions forimprovement, I want to thank Drue Coles, Judy Goldsmith, Fred Green,Steve Homer, Steve Kautz, Luc Longpr�e, Chris Pollett, Marcus Schaefer,and Martin Strauss, each of whom read one or more chapters. I also want tothank my wife, Pennylyn Dykstra-Pruim, who in addition to putting up withmy long and sometimes odd hours also proofread the manuscript; her e�ortsimproved its style and reduced the number of typographical and grammaticalerrors. Finally, many thanks go to Uwe Sch�oning for writing the original bookand collaborating on the English edition. Randall PruimJuly, 1998

Table of Contents
Fundamental De�nitions and Results : 11. The Priority Method : 92. Hilbert's Tenth Problem : 153. The Equivalence Problemfor LOOP(1)- and LOOP(2)-Programs : 254. The Second LBA Problem : 375. LOGSPACE, Random Walks on Graphs,and Universal Traversal Sequences : 416. Exponential Lower Boundsfor the Length of Resolution Proofs : 497. Spectral Problems and Descriptive Complexity Theory : : : 618. Kolmogorov Complexity, the Universal Distribution,and Worst-Case vs. Average-Case : 719. Lower Bounds via Kolmogorov Complexity : : : : : : : : : : : : : : : 7710. PAC-Learning and Occam's Razor : 8511. Lower Bounds for the Parity Function : 9112. The Parity Function Again : 10113. The Complexity of Craig Interpolants : 11114. Equivalence Problems and Lower Boundsfor Branching Programs : 11515. The Berman-Hartmanis Conjecture and Sparse Sets : : : : : : 123

X Table of Contents16. Collapsing Hierarchies : 13117. Probabilistic Algorithms,Probability Ampli�cation,and the Recycling of Random Numbers : : : : : : : : : : : : : : : : : : : 14118. The BP Operator and Graph Isomorphism : : : : : : : : : : : : : : : 15319. The BP-Operator and the Power of Counting Classes : : : : : 16320. Interactive Proofs and Zero Knowledge : : : : : : : : : : : : : : : : : : : 17521. IP = PSPACE : 18322. P 6= NP with probability 1 : 19123. Superconcentrators and the Marriage Theorem : : : : : : : : : : : 19724. The Pebble Game : 20325. Average-Case Complexity : 21326. Quantum Search Algorithms : 223Solutions : 237Bibliography : 309Index : 313

Fundamental De�nitions and Results
Before we begin, we want to review briey the most important terms, def-initions, and results that are considered prerequisite for this book. Moreinformation on these topics can be found in the appropriate books in thebibliography.GeneralThe set of natural numbers (including 0) is denoted by N , the integers by Z,and the reals by R. The notation log will always be used to indicate logarithmsbase 2, and ln to indicate logarithms base e.If � is a �nite non-empty set (sometimes referred to as the alphabet),then �� denotes the set of all �nite strings (sequences) from �, including theempty string, which is denoted by �. A subset L of �� is called a (formal)language (over �). The complement of L (with respect to some alphabet �)is �L = �� � L. For a string x 2 ��, jxj denotes the length of x; for a setA, jAj denotes the cardinality of A. For any ordering of the alphabet �, thelexicographical order on �� (induced by the order on �) is the linear orderingin which shorter strings precede longer ones and strings of the same lengthare ordered in the usual lexicographic way. For � = f0; 1g with 0 < 1, thisordering begins � < 0 < 1 < 00 < 01 < 10 < 11 < 000 < � � �We assume that all �nite objects (graphs, formulas, algorithms, etc) thatoccur in the de�nition of a language have been suitably encoded as stringsover f0; 1g. Such encodings are denoted by h�i.A polynomial p in variables x1; : : : ; xn is a function of the formp(x1; : : : ; xn) = kXi=1 �ixa1i1 xa2i2 : : : xanin ;where k; aij 2 N . For our purposes, the coe�cients, �i, will usually alsobe integers (sometimes natural numbers). The largest occurring exponentaij (with �i 6= 0) is the degree of the polynomial p. The total degree of the

2 Fundamental De�nitions and Resultspolynomial p is the largest occurring value of the sum ai1 + ai2 + : : : + ain(with �i 6= 0). A univariate polynomial of degree d is uniquely determined byspecifying d+ 1 support points (x0; y0); (x1; y1); : : : ; (xd; yd) with x0 < x1 <: : : < xd (Interpolation Theorem).Graph TheoryGraphs play a role in nearly all of our topics. A graph is a structure G =(V;E) consisting of a �nite sets V of nodes and E of edges. In the case of adirected graph, E � V �V , and in the case of an undirected graph E � �V2 �,the set of all two-element subsets of V . A path (from v1 to v2) is a sequenceof adjoining edges (which begins at v1 and ends at v2). If v1 = v2 and thepath consists of at least one edge, then the path is called a cycle. A graph isconnected if there is a path from any node in the graph to any other nodein the graph; acyclic if it contains no cycles; and bipartite if the node set Vcan be partitioned into V = V1 [V2 in such a way that V1 \ V2 = ;, andevery edge of the graph joins a node in V1 with a node in V2. The degreeof a node is the number of other nodes that are joined to it by an edge. Indirected graphs we speak further of the in-degree and out-degree of a node.A node without predecessors (in-degree 0) is called a source, a node withoutsuccessors (out-degree 0) is called a sink.Two graphs G1 = (V1; E1) and G2 = (V2; E2) are isomorphic if thereis a bijective mapping ' : V1 ! V2 (which can be extended in the obviousway to edges) such that e 2 E1 () '(e) 2 E2. We denote by '(G) thegraph isomorphic to G that results from applying the permutation ' to thenodes and edges of G. The set of automorphisms of a graph G is the set ofall isomorphisms between G and G, i.e., the set of all permutations ' suchthat '(G) = G.Boolean Formulas and CircuitsA boolean function is a function f : f0; 1gn ! f0; 1g. Boolean functions canbe represented as boolean formulas, boolean circuits, or branching programs.A boolean formula is built up in the usual way from the symbols ^, _, and:, the variables xi, and parentheses. SAT denotes the (decision) problem ofdetermining for a given boolean formula whether or not it is satis�able, thatis, whether there is an assignment for the variables in the formula that causesthe formula to be evaluated as \true" (or 1).A boolean circuit is a directed, acyclic, connected graph in which the in-put nodes are labeled with variables xi and the internal nodes have in-degreeeither 1 or 2. Nodes with in-degree 1 are labeled with : and nodes within-degree 2 are labeled with either ^ or _. Each node in the graph can be

Fundamental De�nitions and Results 3associated with a boolean function in the obvious way by interpreting : asthe NOT-function, ^ as the AND-function, and _ as the NOT-function. Thefunction associated with the output node of the graph is the function com-puted by (or represented by) the circuit. A formula can also be understoodas a circuit in which every node has out-degree 1. The size of a circuit or aformula is the number of ^, _, and : symbols that occur in it. For some ofthe topics, we will consider families of boolean circuits for which there is apolynomial p(n) such that the size of the nth circuit is bounded by p(n). Inthis case we will say that the family of functions has polynomial-size circuits.For some of the topics we will also consider circuits in which the AND- orOR-gates may have unbounded fan-in.Branching programs will be introduced in Topic 14.Quanti�er LogicFormulas with quanti�ers occur in various contexts. In order to evaluate aformula of the form 9xF , where F is a formula (containing function andpredicate symbols in addition to boolean operations), one must �rst �x astructure, which consists of a domain and interpretations of all occurringfunction and predicate symbols over that domain. The formula 9xF is validif there exists some element of the domain such that if all free occurrencesof x in F are replaced with that element, then the resulting formula is valid.Formulas with universal quanti�ers are evaluated analogously.In this book, the following variations occur: in a quanti�ed boolean formulathe domain for the variables is always considered to be the truth values 0and 1, and no function or predicate symbols are permitted other than theboolean operations. The problem QBF is the problem of determining for agiven quanti�ed boolean formula with no free variables if it is valid (underthis interpretation).A predicate logic formula may have arbitrary function and predicate sym-bols as well the equality symbol. When such a formula F is valid in a givenstructure A, then we write A j= F . In this case A is called a model for F .The formula F is satis�able if it has at least one model. It is a tautology iffor every suitable structure A, A j= F . In this case we write j= F .In an arithmetic formula only the two special functions symbols + and�, the equality symbol, and the constant symbols 0 and 1 are allowed. Suchformulas are interpreted in the special, �xed structure with domain N , and+ and � interpreted by the usual addition and multiplication in N .ProbabilityWe will only consider �nite or countable probability spaces
, so any subsetof
 can be an event. Pr[E] is used to denote the probability of event E. It

4 Fundamental De�nitions and Resultsis always the case that Pr[;] = 0, Pr[
] = 1, and Pr[
 � E] = 1� Pr[E].If E1; E2; : : : are pairwise mutually exclusive events, i.e., for any pair i andj, Ei \Ej = ;, then Pr[[iEi] =PPr[Ei]. The inclusion-exclusion principleholds for arbitrary events E1; : : : ; En and states thatPr[[iEi] =Pi Pr[Ei]�Pi<j Pr[Ei \Ej]+Pi<j<k Pr[Ei \ Ej \ Ek]� � � � � � � �Pr[E1 \ : : : En] :In the equation above the �rst term on the right overestimates the correctvalue, the �rst two underestimate it, etc. Thus, the �rst term can be used asan upper bound and the �rst two terms as a lower bound for Pr[[iEi].By conditional probability Pr[E1jE2] (read the probability of E1 given E2)we mean the quotient Pr[E1 \ E2]=Pr[E2].A set of events fE1; : : : ; Eng is called pairwise independent if for everyi; j 2 f1; : : : ; ng with i 6= j, Pr[Ei\Ej] = Pr[Ei]�Pr[Ej] and completely inde-pendent if for every non-empty set I � f1; : : : ; ng, Pr[\i2IEi] =Qi2I Pr[Ei].A random variable is a map from the set of events into the set R. Theexpected value of a random variable Z is E(Z) = Pa Pr[Z = a] � a and itsvariance is V (Z) = E((Z �E(Z))2 = E(Z2)� (E(Z))2. (The sum is over allvalues a that the random variable Z takes on with non-vanishing probabil-ity.) The expected value operator is linear: E(aX + bY) = aE(X) + bE(Y).Occasionally we will make use of various inequalities when approximatingprobabilities.Markov's inequality. If Z is a random variable that only takes on positivevalues, then Pr[Z � a] � E(Z)=a.Chebyshev's inequality. Pr[jZ �E(Z)j � a] � V (Z)=a2.One frequently occurring probability distribution is the binomial distri-bution. In a binomial distribution a random experiment with two possibleoutcomes (\success" and \failure") is carried out n times independently. Letp be the probability of success in one of these trials, and let X be the randomvariable that \counts" the number of successes. ThenPr[X = i] = �ni�pi(1� p)(n�i) ;E(X) = np ;V (X) = np(1� p) :ComputabilityThe set of (partial) computable functions (over N or ��, depending on thecontext) can be de�ned (among other ways) by means of Turing machines.One de�nes a transition function (or a transition relation if the Turing ma-chine is nondeterministic instead of deterministic) on the set of con�gurations

Fundamental De�nitions and Results 5of a Turing machine, among which are the start con�gurations, which corre-spond uniquely to the possible values of the function argument x, and endcon�gurations, from which one can derive the value of the function, f(x). Acon�guration is a complete description of the Turing machine at a given time(consisting of state, head position(s), and contents of the work tape(s)). Asequence of con�gurations beginning with the start con�guration correspond-ing to input x such that each successive con�guration is determined accordingto the transition function of the machine is called a computation of the ma-chine on input x. Mi denotes the ith Turing machine, which corresponds tothe ith partial computable function 'i and the ith computably enumerablelanguage Wi = L(Mi). A language L is computable (or decidable) if both thelanguage and its complement are computably enumerable. (Equivalently, Lcomputable if there is a Turing machine M such that L = L(M) and Mhalts on all inputs.) Well-known undecidable problems (languages) includethe halting problem: H = fhM;xi jM halts on input xgand the halting problem with empty tape:H0 = fhMi jM halts when started with an empty tapeg :Other models of computation that are equivalent to the Turing machinemodel include register machines (also called GOTO-programs), WHILE-programs, and �-recursive functions. In each of these one can de�ne simi-lar undecidable halting problems. A further example of a language that isundecidable but still computably enumerable is the set of all tautologies inpredicate logic. On the other hand, the set of all valid arithmetic formulas (inthe structure (N ;+; �)) is not even computably enumerable. (One says thatarithmetic is not axiomatizable.)A language A is (many-one) reducible (written A �m B) if there is atotal computable function f such that for all x, x 2 A () f(x) 2 B. Thelanguage A is Turing-reducible to B (written A �T B) if there is an oracleTuring machineM that halts on all inputs and for which A = L(MB), whereL(MB) denotes the language accepted by M using B as oracle (i.e., as a\sub-routine"). If A is reducible to B by either of these types of reducibilitiesand B is decidable (or computably enumerable), then A is also decidable(computably enumerable, respectively).Complexity TheoryA complexity class is formed by collecting together all languages that canbe computed by Turing machines with similar restrictions on their resourcesor structure. The class P consists of all problems that can be solved with

6 Fundamental De�nitions and Resultsdeterministic Turing machines whose running time is bounded by a polyno-mial in the length of the input. The class NP consists of all problems thatare accepted by a nondeterministic Turing machine for which the \runningtime" (in this case the depth of the computation tree) is bounded by a poly-nomial in the length of the input. More generally, one can de�ne the classesDTIME(f(n)) and NTIME(f(n)). The di�erence is that the running timesof the corresponding Turing machines are no longer required to be boundedby some polynomial but instead must be bounded by some function that isO(f(n)). The classes DSPACE(f(n)) and NSPACE(f(n)) can be de�ned anal-ogously, in which case the amount of space used on the work tape (but notthe input tape) is bounded instead of the running time. PSPACE denotes theclass [fDSPACE(f(n)) j f is a polynomialg.We have the following inclusions:DSPACE(logn) � NSPACE(logn) � P � NP � PSPACE� (�Notice that at least the �rst two classes are strictly contained in the last.Sometimes L and NL are used to denote DSPACE(logn) and NSPACE(logn).If f and F are two functions such that F is time constructible and growssigni�cantly more rapidly than f , for example, iflimn!1 f(n) log f(n)F (n) = 0;then DTIME(f(n)) (DTIME(F (n)). Analogous statements hold for DSPACE,NTIME, and NSPACE.For a complexity class C, coC denotes the set of all languages whosecomplements are in C. Some classes are known to be closed under comple-mentation: P = coP, PSPACE = coPSPACE, DTIME(f(n) = coDTIME(f(n)),DSPACE(f(n) = coDSPACE(f(n)), and NSPACE(f(n) = coNSPACE(f(n))(see Topic 4). For other classes, closure under complement is not known andin fact doubtful: NP =?coNP.A language L is called NP-complete if L 2 NP and for all A 2 NP,A �Pm L, where �Pm is de�ned analogously to �m with the di�erence thatthe reduction function must be computable in time that is bounded by apolynomial in the length of the input. The language SAT is NP-complete.For every NP-complete language L we haveL 2 P () P = NP :The de�nition of NP-completeness can be sensibly extended to other (larger)complexity classes. For example, the languageQBF is PSPACE-complete. Justas �Pm is a polynomial time-bounded version of �m, �PT can be de�ned as thepolynomial time-bounded version of �T. Instead of A �PT B we sometimes

Fundamental De�nitions and Results 7write A 2 P(B) or A 2 PB (and say that A is computable in polynomial timerelative to B). If in this de�nition we use a nondeterministic machine insteadof a deterministic one, then we write A 2 NPB . These notations can also beextended to classes of languages:PC = [B2C PB ; NPC = [B2CNPB :Algorithms and Programming LanguagesFor the representation of algorithms, we use a notation that resembles pro-gramming language MODULA; this language contains the usual assignmentof variables, branching instructions of the formIF ... THEN ... ELSE ... ENDand the usual loop constructs:FOR ... TO ... DO ... ENDWHILE ... DO ... ENDREPEAT ... UNTIL ... ENDOccasionally we will use procedures, especially when describing recursive al-gorithms.The programs are typically to be understood as informal descriptions ofTuring machines, and from time to time we will expand the programminglanguage to include additional keywords that describe operations speci�c toTuring machines. The instructionsINPUT ...OUTPUT ...express that the Turing machine is to read from its input tape or write to itsoutput tape. The instructionsACCEPTREJECTcause the Turing machine to halt in an accepting or rejection state.Nondeterministic machines \guess" a string (from a �nite set) and assignthe guess to a program variable. The variable then takes on any one of thepossible values. For this we writeGUESS x 2 Swhere S is a �nite set.Probabilistic (randomized) algorithms are similar to nondeterministic al-gorithms, but the various possibilities of a guess are assigned probabilities(always according to the uniform distribution, that is, each possibility isequally likely to be guessed). In this case we modify the instruction above to

8 Fundamental De�nitions and ResultsGUESS RANDOMLY x 2 SAfter the execution of such an instruction, for every s 2 S it is the case thatPr[x = s] = 1=jSj.

1. The Priority Method
In the early years of computability theory, Emil Post formulated a prob-lem which was �rst solved twelve years later independently by a Russian(Muchnik) and an American (Friedberg). The solution introduced a newmethod, the priority method, which has proven to be extremely useful incomputability theory.Let W0;W1;W2; : : : be an enumeration of all computably enumerable lan-guages. Such an enumeration can be obtained by enumerating all TuringMachines Mi and setting Wi = L(Mi), the language accepted by Mi. Inan analogous way we can also enumerate all oracle Turing Machines. Forany language B, let WBi = L(MBi) be the ith language that is computablyenumerable relative to B (that is, with B as oracle).A language A is Turing reducible to B (written: A �T B), if there isan oracle Turing Machine M that computes the characteristic function of Arelative to B (i.e., with oracle B). In particular, this implies that M halts onevery input (with oracle B).The de�nition of �T can also be writtenA �T B , (9i : A =WBi and 9j : A =WBj) :Two languages A and B are said to be Turing equivalent if A �T B andB �T A, in which case we write A �T B.\Post's Problem," as it has come to be known, is the question of whetherthere exist undecidable, computably enumerable sets that are not Turingequivalent to the halting problem. In particular the answer is yes if there aretwo computably enumerable languages A and B that are incomparable withrespect to �T, i.e. such that A 6�T B and B 6�T A.If there are two such languages, then neither one can be decidable {Exercise 1.1. Why? C{ nor can either one be equivalent to the halting problem.Exercise 1.2. Why? C

10 Topic 1So the picture looks like this:'
&
$
%#" !decidable languages

T-equivalent to halting problem� �BA
#" !computably enumerable languagesppppppppppp ppppppppp ppppppppppppppppp� ��

It is not di�cult to de�ne languages by diagonalization so that A 6�T B(in fact so that A and B are incomparable with respect to �T). One selectsfor each i an xi and arranges the de�nitions of A and B such that xi 2A () xi 62 WBi , i.e. xi 2 A () xi 2 WBi . The input xi is said tobe a witness for the fact that A is not computably enumerable in B via Wi.In the known diagonalization constructions one can usually recognize easilythat the function i 7! xi is in fact computable. This means that the witnessxi can be found e�ectively in i.The problem with these constructions is that the languages A and B thatthey produce are not computably enumerable. In fact, it can be shown thatit is impossible to construct two computably enumerable languages A and Bfor which A 6�T B and B 6�T A and such that the respective witnesses canbe found e�ectively. Thus some new method, fundamentally di�erent fromthe \usual" diagonalization technique, is needed to solve Post's Problem.Before solving Post's Problem, however, we want to show that the claimjust made is valid. Notice �rst that a computably enumerable language Ais computable (in B) if and only if A is computably enumerable (in B).Therefore, we make the following de�nition: a language A is e�ectively notTuring reducible to B if there is a total computable function f such that forall i, f(i) 2 A 6, f(i) 2 WBi , that is, f(i) 2 A, f(i) 2WBi .The following claim is then true:Claim. If A and B are computably enumerable languages and A is e�ectivelynot Turing reducible to B, then B is computable.Exercise 1.3. Why does it follow from the claim that if there are any com-putably enumerable languages that are incomparable with respect to Turingreducibility that this fact cannot be demonstrated e�ectively? CProof (of the claim). Since B is computably enumerable, it su�ces to showthat the hypothesis implies that B is computably enumerable. For each z, letMz be the following oracle Turing machine:

The Priority Method 11INPUT x;IF z 2 ORACLE THEN REJECTELSE ACCEPTENDThe function g : z 7! Coding of Machine Mzis clearly computable, and furthermoreWBg(z) = �N if z 62 B,; if z 2 B.By hypothesis there is a total computable function f such thatf(n) 2 A, f(n) 2WBn :Now consider f(g(z)) for arbitrary z. We obtainf(g(z)) 2 A , f(g(z)) 2WBg(z) (by choice of f), WBg(z) = N (by choice of g), z 62 B :That is, B = g�1(f�1(A)). Since A is computably enumerable, it followsfrom this representation of B that B is computably enumerable. utExercise 1.4. Show that the preceding sentence is valid. COn the basis of this observation, many researchers were of the opinionthat Post's Problem could not be solved. There is, however, a solution. Thelanguages A and B must be Turing incomparable in a certain non-e�ectiveway. The method by which this is possible is now referred to as the prioritymethod and was developed independently by Friedberg (USA) and Muchnik(Russia) in 1956, roughly 12 years after Post originally posed the problem.In 1983, at the Computational Complexity Conference in Santa BarbaraP. Young considered these 12 years as the potential length of time needed to�nd a solution to the P-NP problem. Twelve years after its de�nition in 1971,the P-NP problem, unfortunately, remained unsolved, as it remains today.� � � � �Now we turn our attention to the solution of Post's Problem.Theorem 1.1. There exist computably enumerable languages A and B thatare Turing incomparable.Proof. We present an enumeration procedure that enumerates A and B si-multaneously, thereby showing that both are computably enumerable. Theenumeration proceeds in stages: stage 0, stage 1, stage 2, etc. Each stage is

12 Topic 1subdivided into two phases, an A phase and a B phase. In an A phase, anelement of A (and in a B phase, an element of B) can potentially be enu-merated; that is, in each phase one element may be put into the appropriatelanguage. In addition, we maintain during the construction two lists{LA andLB{ the entries of which are all of the form (i; x). In these pairs i is the indexof a Turing machineMi, and x is an input for which we will try to guaranteethat x 2 A, x 2WBi (x 2 B , x 2WAi , respectively). Each entry in theselists is either `active' or `inactive'. Furthermore, xA (xB) will always be aninput that is so large that it does not a�ect any of the preceding decisions.Step 0 is used for initialization.Step 0. (Phase A and B)Let A = B = LA = LB = ; and xA = xB = 0The actual construction then proceeds as follows:� Step n+ 1. (Phase A)LA := LA [f(n; xA)g; ((n; xA) is `active').FOR all active (i; x) 2 LA in increasing order according to i DOIF Mi on input x and Oracle B (as constructed so far)accepts in n or fewer stepsTHEN A := A [fxg; Declare (i; x) to be `inactive';(�)8>>>>>>>>>>>><>>>>>>>>>>>>:
Let y be the largest oracle query inthe computation above;xB := max(xB ; y + 1);j := 0;FOR (k; y) 2 LB ; k � i DOLB := LB � f(k; y)g [f(k; xB + j)g; (�active�)j := j + 1;END;xB := xB + j;GOTO Phase B;END;END;GOTO Phase B;� Step n+ 1. (Phase B)LB := LB [f(n; xB)g; (�active�)FOR all active (i; x) 2 LB in increasing order according to i DOIF Mi on input x and Oracle A (as constructed so far)accepts in at most n stepsTHEN B := B [fxg; Declare (i; x) to be `inactive';

The Priority Method 13
(�)8>>>>>>>>>>>><>>>>>>>>>>>>:

Let y be the largest oracle query inthe computation above;xA := max(xA; y + 1);j := 0;FOR (k; y) 2 LA; k > i DOLA := LA � f(k; y)g [f(k; xA + j)g; (�active�)j := j + 1;END;xA := xA + j;GOTO Step n+ 2;END;END;GOTO Step n+ 2;We claim that the languages A and B that are \enumerated" by thepreceding construction have the desired properties, namely that A 6�T B andB 6�T A, or more precisely that for all i 2 IN there exist x and x0 withx 2 A, x 2 WBi and x0 2 B , x0 2 WAi .Notice that the entries (i; x) in the lists LA and LB can change andthat such changes respect the following priority ordering: The entry (0; :::)in List LA has highest priority, then (0; :::) in list LB , then (1; :::) in list LA,then (1; :::) in list LB , etc. This means that if at stage n of the construction(i; x) 2 LA and Mi accepts x with oracle B in at most n steps, then xis enumerated into A. To prevent subsequent changes to the oracle B thatmight alter this computation, all of the entries (j; :::) in the list LB thathave lower priority than (i; x) are removed from the list and replaced by newentries which are \large enough" that they do not a�ect the computation. Onthe other hand, it can happen that a requirement \x 2 A , x 2 WBi " thatat some point in the construction appears satis�ed is later \injured." Thishappens if some x0 is enumerated into B for the sake of some entry (i0; x0)of higher priority (i.e., for which i0 < i). It is precisely the determination ofthese priorities that is carried out in section (�) of the construction.What is important is that for each i the entry (i; :::) in list LA or LBis changed only �nitely many times (\�nite injury"). This can be proven byinduction on i.Exercise 1.5. Carry out this induction. Also determine how often (at most)an entry (i; :::) in LA (LB , respectively) can change. CA picture is useful in understanding how the construction proceeds. Onecan imagine the construction taking place on the following \abacus":

14 Topic 1
���� �������� ������������������������������������ � � �� � �0 1 2 3 4 50 1 2 3 4 5

?
60 1 2 3 4 5 6 7 8 9 10 11 12BA

xA
xBThe active entries (i; n) in the lists LA and LB are represented by ballslabeled with the number i and appearing in position n of the appropriaterow. The arrows indicate the numbers xA and xB , respectively. If the valuesof entries in LB (LA) change, then this is caused by one of the balls labeledi in the A row (B row). In this case, all of the balls of lower priority (thatis, with larger index) in the B row are slid to the right until they are beyondthe arrow for xB (xA). After the balls have been slid to the right, the arrowxB (xA) is slid to the right beyond all of the balls.We know that the entry (i; x) in LA slides only �nitely many times. Let(i; x) be the �nal entry in LA, corresponding to the location in which ball i\comes to rest." There are two cases: x 2 A or x 62 A. If x 2 A, then thereis a step n such that during the A phase of stage n, x enters A. Since (i; x)is the �nal entry in LA, it is not possible that at some later stage anythingentered B (for the sake of some (i0; x0) of higher priority) that might haveinjured the requirement x 2 A, x 2WBi .If x 62 A, then x 62 WBi , since otherwise there would have been a stage nduring which the THEN-clause for (x; i) would have been operative, in whichcase x would have been enumerated into A. So in this case it is also true thatx 2 A, x 2 WBi .By a symmetric argument, one can show that for all i there is a x0 withx0 2 B , x0 2WAi . utReferences� H. Rogers: Theory of Recursive Functions and E�ective Computability,McGraw-Hill, 1967, Chapter 10.� W.S. Brainerd, L.H. Landweber: Theory of Computation, Wiley, 1974,Section 8.4.� R.I. Soare: Recursively Enumerable Sets and Degrees, Springer, 1980,Chapter VII.

2. Hilbert's Tenth Problem
Hilbert's Tenth Problem goes back to the year 1900 and concerns a fun-damental question, namely whether there is an algorithmic method forsolving Diophantine equations. The ultimate solution to this problem wasnot achieved until 1970. The \solution" was, however, a negative one: thereis no such algorithm.Among the 23 famous open problems posed by the mathematician DavidHilbert in 1900 was one { problem number ten { which possesses an especiallyclose connection to computability theory, (although this connection was onlyapparent later). This problem deals with Diophantine equations { namedafter Diophantus of Alexandria, 3rd century A.D. { which are equations ofthe form f(x1; : : : ; xn) = 0, where f is a polynomial with integer coe�cients.Required is a method �nding integer solutions x1; : : : ; xn to such an equation(i.e., zeroes of f in Z). This task is equivalent to the task of �nding, giventwo polynomials f and g with integer coe�cients, solutions to the equationf = g, since f = g if and only if f � g = 0.Exercise 2.1. For what values of a; b 2 Z�f0g does the Diophantine equationax+ by = 1have integer solutions? CA positive solution to Hilbert's tenth problem (by which we mean theexistence of an algorithm to solve such equations) would have had many im-portant consequences. Many open problems in Number Theory and also insome other areas of mathematics can be reformulated as Diophantine equa-tions.Hilbert's tenth problem was solved in 1970 by Y.V. Matijasevi�c after sig-ni�cant progress had been made by J. Robinson, H. Putnam and M. Davis.The solution was, however, of a much di�erent sort than Hilbert had prob-ably conjectured. The problem is undecidable, which means that there is noalgorithm that takes as input a Diophantine equation and correctly decideswhether it has an integer solution.This result represents a signi�cant sharpening of (a variant of) G�odel's In-completeness Theorem, which says that the problem of testing an arithmetic

16 Topic 2formula for validity is undecidable. Arithmetic formulas are formulas that arebuilt up from the basic operators =; �;+, boolean operations, constants andvariables over the integers, as well as existential and universal quanti�ers.Example of an arithmetic formula:9x 8z 9u (u � 2 = v) ^ :(x � x+ u � z = u � x+ 5)Diophantine equations can be seen as a special case of arithmetic formulas,namely those in which negation and universal quanti�ers do not occur. (Thatis, all variables that occur are existentially quanti�ed.) The following twoexercises show how to eliminate the logical connectives AND and OR.Exercise 2.2. Show that the problem of simultaneously solving a system ofDiophantine equations f1(x1; : : : ; xn) = 0; andf2(x1; : : : ; xn) = 0; and...fk(x1; : : : ; xn) = 0can be reduced to the case of a single Diophantine equation. CExercise 2.3. The last exercise demonstrated in a certain sense the existenceof an AND-function for the solvability problem for Diophantine equations.Show that there is a corresponding OR-function, that is, show that the prob-lem of solving f1(x1; : : : ; xn) = 0; orf2(x1; : : : ; xn) = 0; or...fk(x1; : : : ; xn) = 0can be reduced to the solution of a single Diophantine equation. CExercise 2.4.� Let Dioph(Z) denote the (decision) problem of determining fora given Diophantine equation whether it has solutions in Z (i.e., precisely theproblem we have been discussing up to this point). Analogously, let Dioph(N)denote the problem of determining if there are solutions in N . (Note that thereare equations G that are in Dioph(Z) but not it Dioph(N).)Show: Dioph(Z) �T Dioph(N).Show: Dioph(Z) �m Dioph(N). CExercise 2.5.� Show: Dioph(N) �m Dioph(Z).

Hilbert's Tenth Problem 17Hint: By a theorem of Lagrange (1770) every natural number can be ex-pressed as a sum of four squares. CNow we turn our attention to the proof of undecidability. This will bedone by �rst reducing the halting problem for register machines to the prob-lem ExpDioph(N). The problem ExpDioph(N) di�ers from Dioph(N) in thatexponential terms of the form xy , where x and y are variables, are also al-lowed.The second reduction that we need, the reduction from ExpDioph(N) toDioph(N) is a gem of number theory, but has little to do with theoreticalcomputer science. For this reason, we omit the proof. (See the references forplaces to �nd a proof.)For the following it will be important that the so-called dominance rela-tion, a partial order on N which we will denote by E, can be expressed usingexponential Diophantine equations. The relation x E y means that all thebits of the binary representation of x are less than or equal to the correspond-ing bits in the binary representation of y. (That is, if x has a 1 in a certainposition, the y must have a 1 there, too.) We postpone for the moment theproblem of expressing E by means of Diophantine equations and simply usethe dominance relation in what follows.For the undecidability proof we use the following model for register ma-chines: A register machine has a �nite number of registers R1; : : : ; Rk, whichcan hold arbitrarily large natural numbers. A register program consists of asequence of consecutively numbered instructions1 : A12 : A2...m : AmThe possible instructions are:� INC Rj (respectively DEC Rj)Increases (decreases) the value in register Rj by one. Negative registervalues are not allowed.� GOTO lUnconditional jump instruction: Jumps to instruction l, the computationproceeds from there.� IF Rj = 0 GOTO lConditional jump instruction: Jumps to instruction l if the value in registerRj is 0.� HALTEnds the program.One might wonder about the missing instructions \Rj := 0" or \Rj :=Rn," which many authors allow in their GOTO programs, but it is easy to

18 Topic 2convince oneself that these instructions can be simulated by correspondingprograms that use a kind of counting loop:Exercise 2.6. Show that the instructions \Rj := 0" and \Rj := Rn" can besimulated using the given set of instructions. CFor the following proof, however, it turns out to be a signi�cant simpli�-cation if only the set of instructions presented above is available. In addition,it is easy to see that without loss of generality we can assume:� The last instruction of the program, Am, is always the HALT instruction,and that it is the only HALT instruction in the program.� Whenever the program stops due to the HALT instruction, all of the reg-isters will have been previously set to 0.� A DEC Rj instruction is never executed while the value of register j is 0.(This can be avoided using conditional jumps.)Despite these various restrictions, this model of computation is computa-tionally universal. Thus, the halting problem H for programs begun with allregisters initialized to 0 is undecidable:H = fP j P is a program for a register machine and this ma-chine stops when it is started with all registers ini-tialized to 0 g .We will reduce this problem to ExpDioph(N) by giving for each programP a set of (exponential) Diophantine equations which have a (simultaneous)solution if and only if P 2 H . Using the methods discussed in Exercises 2.2and 2.3, this set of equations can then be transformed into a single equation.So let P be a program of the form1 : A12 : A2...m : Amand let the registers that are addressed in the program be R1; : : : ; Rk. Weassume without loss of generality that the previously mentioned restrictionsare satis�ed.The system of Diophantine equations will contain a number of variables,the intended meaning of which we will give �rst. For the sake of readability, wewill use capital letters for all variables. Certain of the variables are supposedto represent �nite sequences of natural numbers (n0; n1; : : : ; ns). We representsuch a sequence with the single number

Hilbert's Tenth Problem 19sXi=0 niBi;where B is a (su�ciently large) base number { also a variable. \Su�cientlylarge" will mean that in arithmetic operations we will be using (for example,adding two such sequence-numbers) we will never need to carry. In addition,B will be a power of 2. This will allow us to use the dominance relationto control individual bits of the binary representation of such a sequence-number.Now we describe the most important variables and their intended mean-ings. (All of these variables are understood to be existentially quanti�ed.)B the base number described above.S the number of steps in the computation (i.e., thenumber of instructions executed) until the HALT in-struction is reached. The number S is the length ofthe sequences coded in the following variables.Wj (j = 1; : : : ; k) a sequence-number for each register, which repre-sents the contents of that register at each step0; 1; : : : ; s in the computation, where s is the valueof S.Ni (i = 1; : : : ;m) a sequence-number for each instruction number,which represents for each step 0; 1; : : : ; s whether theinstruction was (=1) or was not (=0) executed atthat step.Example. Suppose B = 10, S = 5, and the register R1 takes on the values0; 1; 2; 1; 1; 0 as the computation runs. Then W1 = 11210. If the �rst instruc-tion is executed at steps 0 and 3, then N1 codes the sequence 1; 0; 0; 1; 0; 0,so N1 = 1001.Now we can give the required Diophantine equations that describe thehalting problem. All the equations are conjunctively connected, so we canuse the previous exercises to transform them into a single equation.First, we have a requirement on the base number B, namely B must bea power of 2: B = 2K :K is an additional (auxiliary) variable. In addition, B must be \su�cientlylarge": B > k; B > m; B > 2 � S :The last condition implies that B will be more than twice as large as anyregister value that can be computed in S steps. (We will need this fact later.)These are not Diophantine equations, since we have made use of the less than

20 Topic 2symbol, but by introducing another auxiliary variable (Z), an expression likeX < Y can be easily expressed as an equation, namely X + Z + 1 = Y .(Another method would have been to de�ne B large enough from the start,say B = 2k+m+S .)The next equations establish certain boundary conditions, for examplethat the sequence-numbers Ni consist solely of 0- and 1-components. For this(and also in the following) it is convenient to have available a variable Tthat consists solely of 1's, that is T =Psi=0Bi. T can be speci�ed with theequation 1 + (B � 1) � T = Bs+1:The condition on the variables Ni can now be formulated asNi E T (i = 1; : : : ;m) :Since exactly one instruction is executed at each step of the computation, wehave the condition mXi=1Ni = T:The next equations establish the start and end conditions for the registermachine computation. The equation1 E N1forces the execution of the program to begin with the �rst instruction. Thelast instruction must be the HALT instruction, which we are assuming isinstruction m: Bs E Nm :Furthermore, initially all registers must be set to 0:Wj E Bs+1 �B (j = 1; : : : ; k) :Now we come to the signi�cant equations, namely those which guaranteethe correct transition behavior from one time step to the next. For eachinstruction of the form i : GOTO j we introduce an equation of the formB �Ni E Nj :The multiplication by B causes the 1's in Ni, which indicate the steps atwhich instruction i is executed, to be moved over one position, thus forcinginstruction j to be executed in step s+ 1 whenever instruction i is executedat step s.In instructions of the forms i : INC Rj and i : DEC Rj there is alsoa \hidden" GOTO instruction, namely the jump to instruction i + 1. So inthese cases we also introduce

Hilbert's Tenth Problem 21B �Ni E Ni+1 :The actual function of INC and DEC instructions can be simulated withWj = B � (Wj +XNi �XNi0) (j = 1; : : : ; k);where the �rst sum is over all i for which there is an instruction in theprogram of the form i : INC Rj , and the second sum is over all i0, for whichthere is an instruction in the program of the form i0 : DEC Rj . Once againthe factor of B causes the e�ect of the instructions to take e�ect at the nexttime step.The only remaining instructions are the conditional jumps. An instructionof the form i : IF Rj = 0 GOTO l implies that execution continues eitherwith instruction l (if Rj = 0) or with instruction i+ 1. So �rst we introducethe equation B �Ni E Nl +Ni+1 ;which forces that the next instruction can only be instruction l or instruc-tion i+ 1. To test the condition Rj = 0 we useB �Ni E Ni+1 +B � T � 2 �Wj :Exercise 2.7. Explain how this equation works. CAll that remains is to show that the dominance relation E can be ex-pressed using exponential Diophantine equations. For this a theorem of Kum-mer (1852) and Lucas (1878) is helpful:Theorem 2.1. x E y if and only if �yx� is odd. utExercise 2.8. Prove Theorem 2.1.Hint: �yx�(mod 2) = �ynxn��yn�1xn�1� � � ��y1x1��y0x0�(mod 2), where xn : : : x0and yn : : : y0 are the binary representations of x and y. CSince the property \odd" can be easily expressed as a Diophantine equa-tion (z is odd if and only if z = 2 � n+1 for some n) it only remains to showthat binomial coe�cients can be expressed using (exponential) Diophantineequations. For this we make use of the Binomial Theorem:(1 + u)n = nXi=0 �ni�ui:Provided �ni� < u, this implies that �ni� is just the ith coe�cient in the u-adicrepresentation of (1 + u)n. Since �ni� � 2n it is su�cient to choose u > 2n.So we can write

22 Topic 2m = �nk� () 9u; v; w : u = 2n + 1; v < uk; m < u and(1 + u)n = wuk+1 +muk + v :This completes the solution to Hilbert's Tenth Problem. utThe next two exercises present some variations on Hilbert's Tenth Prob-lem that remain undecidable.Exercise 2.9.� Show that the undecidability of Hilbert's Tenth Problem, i.e.,the undecidability of Dioph(N) (or Dioph(Z)), implies the undecidability ofthe following problem:Given two n-variate polynomials f and g with positive coe�-cients, determine whether it is the case that f(x) � g(x) forall x 2 Nn. CExercise 2.10.� Show that Hilbert's Tenth Problem is already undecidableif one restricts oneself to polynomial equations of the form f(x1; : : : ; xn) = 0where the total degree of f (i.e., the degree of f(x; x; : : : ; x)) is at most four.Hint: As in the reduction of SAT to 3SAT (see Garey and Johnson) oneintroduces for each sub-polynomial of f a new variable and then expressesthe property that f = 0 through the conjunction of a set conditions of theform f1 = 0; : : : ; fk = 0. Each polynomial fi has total degree at most twoand the equation fi = 0 expresses that the ith new variable has the desiredvalue. CReferencesFor the portions of the proof of Hilbert's Tenth Problem, the following liter-ature was helpful:� L. Adleman, K. Manders: Diophantine complexity, Symposium on Foun-dations of Computing, IEEE 1976, 81{88;� J.L. Bell, M. Machover: A Course in Mathematical Logic, North-Holland,1977.� M. Davis, Unsolvable Problems, in J. Barwise, ed., Handbook of Mathe-matical Logic, North-Holland, 1977.� P. van Emde Boas: Dominoes are forever, Technical Report 83-04, Dept.of Mathematics, University of Amsterdam, 1983.� R.W. Floyd, R. Beigel: The Language of Machines: An Introduction toComputability and Formal Languages, Computer Science Press, 1994.(Exercise 2.10 appears here.)

Hilbert's Tenth Problem 23� J.P. Jones, Y.V. Matijasevi�c: Proof of recursive unsolvability of Hilbert'stenth problem, American Mathematical Monthly, Oct. 1991, 689{709.� G. Rozenberg, A. Salomaa: Cornerstones of Undecidability, Prentice-Hall, 1994.The reduction of ExpDioph(N) to Dioph(N) can be found in the article byJones and Matijasevi�c and also in� M. Davis: Computability and Unsolvability, Dover, 1982.Exercise 2.9 is from� M. Hack: The equality problem for vector addition systems is undecid-able, Theoretical Computer Science 2 (1976), 77{95.The article above also presents further applications of the undecidability re-sult to questions about Petri nets.

24 Topic 2

3. The Equivalence Problemfor LOOP(1)- and LOOP(2)-Programs
In the 1960's, before the boom in complexity theory, several subrecur-sive classes of functions and languages were investigated extensively. Onesuch hierarchy of functions (contained in the primitive recursive functions)considers the depth of nesting of (FOR) loops. It turns out that there isa decided di�erence in the complexity of the equivalence problems forLOOP(1)- and LOOP(2)-programs: the former is coNP-complete, but thelatter is undecidable.LOOP-programs form a very restricted class of programs for manipulatingnumbers in N (including 0), which are stored in registers. Registers in thismodel can hold arbitrarily large integers. The syntax of LOOP-programsis de�ned inductively: If X and Y are names of registers, then X := Y ,X := X + 1 and X := 0 are LOOP-programs. Furthermore, if P and Q areLOOP-programs, then P ;Q is a LOOP-program, as is LOOP X DO P END.Regarding the semantics of LOOP-programs, that is, the manner in whichthey are to be executed, the following should be said: Assignment statementsare executed in the obvious way so that the register values are changed inthe appropriate fashion. A LOOP-program of the form P ;Q is executed byexecuting the program P �rst and then (with the values P leaves in theregisters remaining intact) executing program Q. And a program of the formLOOP X DO P END executes program P as many times as the value of X atthe beginning of the loop.In addition to specifying the LOOP-program itself, it is necessary to spec-ify which of the registers { which we will also refer to as variables { are to beunderstood as the input registers, and which as output registers. (Typically,there is only one output register.)The function f : Nn ! Nm computed by a LOOP-program (with n inputregisters and m output registers) is de�ned as follows: f(a1; : : : ; an), withai 2 N , is the vector of values in the output registers of the machine after theprogram is run with ai in the ith input register and 0 in all other registersat the start of execution. It is known that the functions that are computableby LOOP-programs are precisely the primitive recursive functions.

26 Topic 3Examples. Addition, in the sense of the assignment \Z := X + Y " can bedone viaZ := Y ;LOOP X DO Z := Z + 1 ENDwhere Z is the output register andX and Y are input registers. Multiplicationcan be done with the following program:Z := 0;LOOP X DOLOOP Y DOZ := Z + 1ENDENDThe loop-depth of a LOOP-program is the maximum occurring depthof nesting of the for loops in the program. (In our examples, the additionprogram has loop-depth 1 and the multiplication program has loop-depth 2.)Exercise 3.1. De�ne loop-depth inductively on the formation of LOOP-programs. CWe call a LOOP-program with loop-depth n a LOOP(n)-program.Exercise 3.2. Subtraction was not included in our set of instructions forLOOP-programs. Show that the instruction X := X .� 1 can be simulatedby a LOOP(1)-program. Note: x .� y is de�ned byx .� y = �x� y if x � y,0 if x < y. CExercise 3.3. Show that the instruction \IF X = 0 THEN P END" can besimulated by a LOOP(1)-program. CExercise 3.4.� Show that if k is a constant, then the instruction \IF X = kTHEN P END" can be simulated by a LOOP(1)-program. CThe equivalence problem (for programs of a certain type) is the problemof determining for two given programs if they compute the same function.The equivalence problem for Turing machines is easily seen to be undecidable,since it is at least as di�cult as the halting problem. On the other hand, theequivalence problem for �nite automata is decidable. The question then isthis: With respect to equivalence problems, where exactly is the boundarybetween undecidability and decidability? We want to investigate this questionusing LOOP-programs.

LOOP(1)- and LOOP(2)-Programs 27The result will be this: The equivalence problem for LOOP(1)-programsis decidable, but for LOOP(2)-programs it is undecidable, and hence alsoundecidable for LOOP(n)-programs where n > 2.� � � � �We will begin with the undecidability result. The halting problem forTuring machines is undecidable. GOTO-programs are equivalent to Turingmachines, so the halting problem for GOTO-programs is also undecidable.In a GOTO-program, every line of the program is numbered consecutivelybeginning with 1 and contains one of the following instructions:X := YX := X + 1X := 0GOTO iIF X = k THEN GOTO iHALTThe semantics of each is self-explanatory.We will focus on the special version of the halting problem for GOTO-programs where the programs are \run on themselves." Let P1; P2; P3; : : : bea systematic enumeration of all GOTO-programs with one input register andone output register. Then the languageK = fn j Pn(n) haltsgis undecidable. This problem can be reduced to a suitable version of theequivalence problem for LOOP-programs as follows:n 2 K , Pn(n) halts, 9s Pn(n) halts in at most s steps, 9s An(s) 6= B(s), An 6� B :Here B is a �xed LOOP(0)-program that, independent of its input, alwaysoutputs 0, and An is a LOOP-program that computes the following function:An(s) = �1 if Pn(n) halts in at most s steps,0 otherwise.We will see that An belongs to LOOP(2). From this it follows immediatelythat the equivalence problem for LOOP(2)-programs is undecidable.What remains then is to give a construction that for each n (i.e., for eachGOTO-program Pn) e�ectively produces a LOOP(2)-program An with thedesired property. As a �rst step, we de�ne a LOOP-program Dn that can

28 Topic 3simulate individual transitions from one con�guration of Pn to the next. Werepresent a con�guration as a vector (a; x; y; z1; : : : ; zk), where a is the num-ber of the instruction about to be executed (or 0 if the program has halted),x is the value stored in the input register, X ; y the value stored in the out-put register, Y ; and (z1; : : : ; zk) the values stored in the remaining registersZ1; : : : ; Zk used by Pn. The desired program Dn works with the registers A,X , Y , Z1, . . . , Zk (and perhaps others) to represent such con�gurations. Thatis, Dn computes a function f : Nk+3 �! Nk+3, where f(a; x; y; z1; : : : ; zk) isthe successor con�guration of (a; x; y; z1; : : : ; zk).Exercise 3.5. If one is given program Dn that behaves as described, how canone build the desired program An?Program An must have loop-depth 2. What loop-depth must Dn have forthis to be the case? CNow we construct Dn. Let the instructions of the GOTO-program Pn benumbered 1 through r. Then Dn looks roughly likeIF A = 1 THEN . . . ENDIF A = 2 THEN . . . END...IF A = r THEN . . . ENDHow the ellipses are �lled in depends on the particular instructions of Pn:Assignment statements X := Y , X := X+1, and X := 0 can be carried overdirectly with the addition of A := A+1. The instruction HALT yields A := 0.For GOTO i we write A := i. For IF X = k THEN GOTO i we write (at �rst)IF X = k THEN A := i ELSE A := A+ 1Note that by using conjunction we can \program out" any nesting of IFstatements that occur, so that we remain in LOOP(1). For example: IF B1THEN IF B2 THEN P END END is equivalent to IF B1 AND B2 THEN P END, canbe simulated by\Z1 := B1";\Z2 := B2";\Z1 := Z1 + Z2";\Z1 := Z1 .� 1";LOOP Z1 DO P ENDThe instructions in quotation marks indicate LOOP(1)-programs, see theprevious exercises.

LOOP(1)- and LOOP(2)-Programs 29Altogether, Dn is a LOOP(1)-program and An is a LOOP(2)-program,so we haveTheorem 3.1. The equivalence problem for LOOP(2)-programs is undecid-able. ut� � � � �Now we turn our attention to LOOP(1)-programs. In this case we shallsee that the equivalence problem is decidable, in fact, it is coNP-complete.For this we need to characterize the LOOP(1)-programs precisely by givinga certain \normal form" for LOOP(1)-programs, so that we can decide if twoLOOP(1)-programs are equivalent by considering only their normal forms.De�nition 3.2. A function f : Nm �! N , m � 0, is called simple if it canbe built from the following components using composition:1. s(x) = x+ 1,2. zn(x1; : : : ; xn) = 0,3. uni (x1; : : : ; xn) = xi,4. x1 + x2,5. x .� k,6. w(x1; x2) = �x1; x2 = 0;0; x2 > 0;7. x DIV k,8. x MOD k.where k 2 N is an arbitrary constant.We want to prove the following theorem:Theorem 3.3. A function is LOOP(1)-computable if and only if it is simple.For the direction from right to left, we observe �rst that functions (1){(5)above are all clearly LOOP(1)-computable.Exercise 3.6. Show that the function w in item (6) is LOOP(1)-computable.CExercise 3.7.� Show that for every k 2 N , the functions x DIV k andx MOD k are LOOP(1)-computable.Hint: Note that k is a constant and not the value of an input register. Thismeans that the number of registers used to compute x MOD k (or x DIV k)can depend on k. CNow we must show the converse: every LOOP(1)-computable functionis simple. Let P be a LOOP(1)-program. Then P has the form P =P1;P2; : : : ;Pm. The function computed by P is the composition of the func-tions computed by P1; P2; : : : ; Pm in various registers. It is su�cient to showthat each Pi computes a simple function in its registers.

30 Topic 3If Pi is an assignment statement, this is clear. Now consider a for loop ofthe form Pi = LOOP X DO Q ENDwhere Q is a LOOP(0)-program.Exercise 3.8. Show that Q can only compute functions of the form(x1; : : : ; xn) 7! xj + k or (x1; : : : ; xn) 7! k, where k is a constant. CSo the e�ect of the LOOP(0)-program can be described with the followingequations: Z1 = �1yi1 + k1Z2 = �2yi2 + k2...Zm = �myim + kmwhere for each i, Zi is a program register, �i 2 f0; 1g, ki 2 N , and yi is thevalue of the register Zi before execution the for loop.Now we can de�ne a directed graph corresponding to this representation.The set of vertices is fZ1; : : : ; Zmg and the edges areE = f(Zi; Zj) j �j = 1 and (i 6= j or kj > 0)g :That is, there is an edge from Zq to Zj if the variable Zj is assigned the valueof Zq, perhaps increased by some constant kj .Example. The equations below Z1 = y2Z2 = y4 + 5Z3 = y1Z4 = y1 + 3Z5 = y2 + 2Z6 = y6 + 7Z7 = y7Z8 = y6 + 1Z9 = 4

LOOP(1)- and LOOP(2)-Programs 31give rise to the following graph:

���� ���� ����
������������

���� ���� ����Z1 Z2 Z3
Z6Z5Z4

Z7 Z8 Z9�����	
?�������?

' $? �����
Isolated variables, i.e., variables that do not occur within a for loop, orthat are independent of loops, are easily handled. In the example above, thefor loop computes in variables Z7 and Z9 the following functions:Z7 = y7Z9 = (IF x = 0 THEN y9 ELSE 4)These functions are clearly simple (see Exercise 3.9), and this example canbe immediately generalized.Exercise 3.9. Show how functions of the formIF x = 0 THEN f ELSE gcan be expressed using the functions w and +. CThe remaining variables are either part of exactly one cycle or depend onexactly one cycle, since each vertex has at most one predecessor.Now we introduce labels on the edges of the graph. These correspondexactly to the ki's. (Note that Z7 and Z9 can be considered taken care of andomitted from the graph altogether.)

32 Topic 3

����
������������

���� ���� ����Z1 Z2 Z3
Z6Z5Z4

Z8 �����	
?�������?

' $? �����1 7
003 25

Suppose that variable Z is part of a cycle of length t, and that if westart from Z and traverse the cycle \backwards" then the edge labels arek1; k2; : : : ; kt. Let M = k1 + � � � + kt. If X (the register that determines thenumber of times the loop is executed) contains a multiple of t, i.e., x = n�t forsome n > 0, then the function computed in register Z isM �n (= n+n+� � �+n(M times)). If x = n � t+ l, for some l < t, then Z =M � n+ (k1 + � � �+ kl).The numbers n and l are just x DIV t and x MOD t, so the function that iscomputed in this case isZ = (IF x = 0 THEN z ELSE M � (x DIV t) + (k1 + � � �+ k(x MOD t)))which is simple, since the numbers M , t, and ki are constants.Exercise 3.10. The argument for the simplicity of this function is still lackingwith regards to the sub-function (k1 + � � �+ k(x MOD t)). Fill in the missingdetails. CNow consider the case of a variable Z that depends on a cycle, but is notitself in the cycle. If this variable is i steps from a cycle variable Z 0, then thefunction computed in register Z is equal to the function computed in registerZ 0 (but on input x .� i) plus a constant, which can be read o� of the pathfrom Z to Z 0. So such a function is also simple. This concludes the proof ofTheorem 3.3. utNow that we have described an e�ective procedure for obtaining a simplefunction from a LOOP(1)-program, the equivalence problem for LOOP(1)-programs is reduced to the equivalence problem for simple functions. A simplefunction is speci�ed by describing in a systematic way how it is built up fromthe basic functions. This could be done, for example, by giving an \expression

LOOP(1)- and LOOP(2)-Programs 33tree" with leaves given labels corresponding to the basic functions, or byproviding a su�ciently parenthesized expression.We now want to investigate to what extent a simple function is uniquelydetermined by specifying its values at certain \support points." For exam-ple, a polynomial (in one variable) of degree d is completely determined byspecifying its value at any d + 1 points. (This fact will also be important inTopic 14.) In the case of simple functions, however, the situation is a bit morecomplicated.First, we introduce a relation on Nn, i.e., on the set of potential input val-ues for a LOOP-program. Let M;K 2 N . We say that the tuple (x1; : : : ; xn)is (M;K)-comparable with (x01; : : : ; x0n) if for i = 1; : : : ; n we have:� (xi < M or x0i < M) =) xi = x0i, and� (xi �M and x0i �M) =) xi � x0i (mod K).We denote this by (x1; : : : ; xn) M;K� (x01; : : : ; x0n) and note that M;K� is anequivalence relation on Nn. Furthermore, we observe that� if M 0 �M , then(x1; : : : ; xn) M 0;K� (x01; : : : ; x0n) =) (x1; : : : ; xn) M;K� (x01; : : : ; x0n) ;� and if K 0 is a multiple of K, then(x1; : : : ; xn) M;K0� (x01; : : : ; x0n) =) (x1; : : : ; xn) M;K� (x01; : : : ; x0n) :Exercise 3.11. Determine the index of the equivalence relation M;K� , that is,the number of distinct equivalence classes. CLemma 3.4. Every simple function f can be assigned numbers M and Ksuch that f is a linear combination on equivalence classes of M;K� , i.e.,f(x1; : : : ; xn) = �0 + nXi=0 �i � xi ;where each �i is a rational constant that depends only on the equivalenceclass.Proof. The proof proceeds by structural induction on the simple function.The argument for the base case is contained in the argument for the inductivestep, so we will focus on the inductive step from the start.1. Let f be a simple function that has already been shown to satisfy thestatement of the lemma with constants M and K. Then the statementof the lemma is true also of f(x1; : : : ; xn)+1 with the same constantsMand K.

34 Topic 32. Upon applying the function zn(� � �) the lemma holds with M = 0 andK = 1.3. If f1; : : : ; fm are simple functions that satisfy the lemma with the con-stantsM1;K1; : : : ;Mm;Km, then the function umi (f1(x); : : : ; fm(x)) sat-is�es the lemma with the constants Mi;Ki.4. If the functions f1 and f2 satisfy the lemma with the constants M1, K1,M2, and K2, then f1(x) + f2(x) satis�es the lemma with the constantsmax(M1;M2) and K1 �K2.5. If the function f satis�es the lemma with the constants M and K, thenthe function f(x) .� 1 satis�es the lemma with M +K and K.6. If the functions f1 and f2 satisfy the lemma with constants M1;K1;M2,and K2, then the function w(f1(x); f2(x)) satis�es the lemma with con-stants max(M1;M2) +K2 and K1 �K2.7. If the function f satis�es the lemma with constants M and K, thenf(x) DIV k satis�es the lemma with the constants M and k �K.8. If the function f satis�es the lemma with constants M and K, thenf(x) MOD k satis�es the lemma with the constants M and k �K. utExercise 3.12.� Fill in the details of the proof above by determining theconstants �i in cases 6 and 7. CNow the decidability result is at hand. Simple functions can be completelyspeci�ed by giving the appropriate values of M and K, and for each of the�nitely many equivalence classes, the constants �i. Therefore, they can alsobe compared on the basis of such speci�cations. But there is an even simplerway to compare simple functions:Exercise 3.13.� Show that a simple function with constants K and M iscompletely speci�ed by giving in addition to K and M the �nitely manyfunction values ff(x)gx2Q, where Q = f(x1; : : : ; xn) j for i = 1; : : : ; n, xi �M + 2Kg. CFrom this our theorem follows immediately:Theorem 3.5. The equivalence problem for LOOP(1)-programs is decidable.Proof. First one determines the constants M1;K1 and M2;K2 for the twoprograms, then one checks to see if the functions agree on the input values xthat have xi � max(M1;M2) + 2K1K2 for all i. utExercise 3.14.� Justify the claims made in the previous proof. C� � � � �Now we want to determine more exactly the complexity of the equiv-alence problem for LOOP(1)-problems. We shall see that this problem iscoNP-complete, which is the same as saying that the inequivalence problemis NP-complete. Most of the work in showing that this problem belongs to

LOOP(1)- and LOOP(2)-Programs 35NP has already been done. The required nondeterministic algorithm, given2 LOOP(1)-programs as input, �rst determines the constants K1;M1 andK2;M2 for the two programs, then nondeterministically guesses an inputvector x with xi � max(M1;M2) + 2K1K2 for all i, and �nally checks to seethat P1(x) 6= P2(x).To verify that this whole procedure is in NP, we must take a closer lookat portions of the computation. The e�ective procedure that produces for agiven LOOP(1)-program its associated simple function can clearly be carriedout in deterministic polynomial time. An inspection of the proof of Lemma 3.4shows that the constantsM and K that are assigned to a simple function canbe chosen in such a way that K is the product of all the constants previouslyoccuring in DIV and MOD functions. (An empty product is considered tohave the value 1.) The value of M can be determined by counting the occur-rences of w and .� 1 functions that occur; if there are m such occurrences,then we can chooseM to beM = m �K. Notice that the number of bits in thebinary representations of M and K is polynomial in the length of the origi-nal LOOP-program, so we can guess x in nondeterministic polynomial time.Finally, we need to evaluate the LOOP-programs on the input x. A step-by-step simulation of the LOOP-program, however, does not work, since thesimulation time could be linear in the values of the inputs, which would beexponential in the lengths of their binary representations. It is more e�cientto make use of the representations as simple functions, since the functions +,.�, w, DIV, and MOD can be evaluated in polynomial time.Theorem 3.6. The inequivalence problem for LOOP(1)-programs is NP-complete.Proof. It remains to show that SAT can be reduced to this problem. Let Fbe a boolean formula with n boolean variables. We construct two LOOP(1)-programs such that the �rst one does nothing but output 0. The secondprogram interprets the input xi in such a way that xi = 0 means FALSEand xi > 0 means TRUE. Under this interpretation, the program evaluatesF with the given assignment and outputs 1 if the assignment makes theformula true and 0 otherwise. Clearly the problems are inequivalent if andonly if there is a satisfying assignment for F , i.e., F 2 SAT . utExercise 3.15. Construct the second LOOP(1)-program mentioned above.Hint: It is su�cient to show how to simulate the logical NOR-function witha LOOP(1)-program. CExercise 3.16. Show that the inequivalence problem for LOOP(1)-programsis already NP-complete if it is restricted to include only programs with oneinput variable. C

36 Topic 3References� V. Claus: The equivalence problem of loop-2-programs, Report No. 40/77,Abteilung f�ur Informatik, Universit�at Dortmund.� A.R. Meyer, D.M.Ritchie: Computation complexity and program struc-ture, IBM Research Report RC 1817, 1967.� D. Tsichritzis: The equivalence of simple programs, Journal of the ACM17 (1970), 729{738.

4. The Second LBA Problem
The solution of the so-called second LBA problem came unexpectedly in1987 and was discovered independently by an American (Immerman) anda Slovakian (Szelepcs�enyi). Among other things, this result says that theclass of context sensitive languages is closed under complementation.The two LBA problems were posed in 1964 by S.Y. Kuroda. The meaning ofthese problems (the formal de�nitions will be given shortly) were repeatedlybrought up and discussed (see, for example, the article by Hartmanis andHunt). In 1987 the time must have been \ripe"; the second LBA problemwas solved completely independently by an American researcher, N. Immer-man, and a Slovakian student, R. Szelepcs�enyi. The amazing part of theseproofs is this: they are considerable easier than one would have expected of aproblem that had remained unsolved for 23 years. Furthermore, the solutionis precisely the opposite of the conjecture that was widely held prior to theproof.What are the LBA problems? Kuroda showed in 1964 that the class of lan-guages that are recognized by nondeterministic linear space-bounded Turingmachines (LBAs, linear bounded automata) is the same as the class of con-text sensitive languages. This result is often presented in an undergraduatecourse on formal languages. In modern terminology, this result says thatNSPACE(n) = CSL ;where CSL is the class of context sensitive languages. The �rst LBA prob-lem is the question of whether deterministic and nondeterministic LBAs areequivalent: NSPACE(n) ?= DSPACE(n) :The result that comes closest to solving the �rst LBA problem is Savitch'sTheorem which says thatNSPACE(s(n)) � DSPACE(s2(n)) ;for all s(n) � logn. So in particular,NSPACE(n) � DSPACE(n2) :

38 Topic 4The second LBA problem is the question of whether the class of languagesaccepted by nondeterministic LBAs is closed under complement:NSPACE(n) ?= coNSPACE(n) :A negative answer to the second LBA problem implies, of course, a negativeanswer to the �rst, since DSPACE(n) is closed under complement. But from apositive solution to the second LBA problem, there is no direct consequenceregarding the �rst LBA problem.The second LBA problem has now been solved (the �rst LBA problemremains open): NSPACE(n) is { contrary to the previously generally believedconjecture { closed under complementation. This solution to the second LBAproblem is actually an instance of a more general result: From the proof itfollows immediately thatNSPACE(s(n)) = coNSPACE(s(n)) ;whenever s(n) � logn.Although the proof is actually relatively easy, at least in the case of Im-merman, it appears at the end of a sequence of results which say that certainhierarchies, de�ned in terms of the class NSPACE(n), \collapse." In all ofthese results, a certain counting technique is employed which can be usedto complement classes. An overview of these techniques was presented in anarticle by U. Sch�oning.Exercise 4.1.� Suppose that membership in a language A can be determinedby some nondeterministic algorithm M (with certain resource bounds whichdo not interest us at the moment). Furthermore, suppose that the numberof strings in A of a given length is given by an \easily computed" functionf : N ! N .Under these assumptions, give a nondeterministic algorithm for A. CExercise 4.2. Now suppose that in the previous exercise the the algorithmM has nondeterministic time complexity tM (n) and space complexity sM (n),and the the computation of f requires tf (n) time and sf (n) space. Determineupper bounds for the time- and space-complexity of the algorithm for A inthe previous exercise. CNow suppose that A 2 CSL = NSPACE(n). If f(n) can also be com-puted in linear space, then by the observations above, A 2 NSPACE(O(n)) =NSPACE(n). So to �nish the proof, we need to show how to compute f inlinear space.Exercise 4.3. For the computation of f in linear space, we will need to makeuse of nondeterminism. That is, we should be thinking of a nondeterministiclinear space-bounded Turing machine that computes f .

The Second LBA Problem 39For such nondeterministic machines, there are various imaginable modelsof what it means for them to compute functions (e.g., single-valued, multi-valued). Find a de�nition that is su�cient to work correctly in this context.CSince A is context sensitive, there is a corresponding grammar G withvariable set V and terminal alphabet � that generates A. For all n; i 2 Nde�ne the subset Tni of (V [�)� as follows:Tni = fx : jxj � n; S i)G xg ;where S i)G x means that x can be derived from the start symbol S in atmost i steps according to the rules of grammar G. For all n, Tn0 = S. For anycontext sensitive grammar G, it is clear that for each n there is an m suchthat Tnm = Tnm+1. Let g(n) = jTnmj, where m is the number just mentioned.Sketch: Shhhhhhhhhhhhhhhhhhhhh(((((((((((((((((((((� � �i = 1 2 3 4 m
Exercise 4.4. Show that for the proof it su�ces to show that g can becomputed in the manner described in Exercise 4.3. CNow we show that g can be computed in this nondeterministic sense inlinear space. Herein lies the reason why this entire proof is often referred to asthe inductive counting method. Our plan is to compute (nondeterministically)in order the numbers 1 = jTn0 j, jTn1 j, jTn2 j,. . . until for some m we have jTnmj =jTnm+1j at which point we will output this number as g(n). What we need thenis a (nondeterministic) procedure that correctly computes jTni+1j under theassumption that the correct value of jTni j is known.Exercise 4.5.� Provide the algorithm for this.Hint: In order to compute jTni+1j correctly, we must identify and count all theelements of Tni+1. For this we need to �rst generate (in an \inner loop") allthe elements of Tni . We will be able to guarantee that we have generated allof Tni since we know how many elements are in the set. CIt should be noted that we have intentionally displaced the inductivecounting argument of the preceding proof from its original context to thecontext of the sets Tni . The original proof uses instead the sets (and number)

40 Topic 4of con�gurations that are reachable from the start con�guration of an LBAin at most i steps. The original proof is more easily generalized to other spacebounds like logn.ReferencesFor background to the LBA problems see� J. Hartmanis, H.B. Hunt: The LBA problem and its importance in thetheory of computing, in R. Karp, ed.: Complexity of Computation, Vol.VII, SIAM-AMS Proceedings, 1973, 27{42.� S.Y. Kuroda: Classes of languages and linear-bounded automata, Infor-mation and Control 7 (1964), 207{233.Savitch's Theorem originally appeared in� J. Savitch: Relationships between nondeterministic and deterministictape complexities, Journal of Computer and Systems Sciences 4 (1970),177{192.The original solutions to the second LBA problem appeared in� N. Immerman: NSPACE is closed under complement, SIAM Journal onComputing 17 (1988), 935{938.� R. Szelepcs�enyi: The method of forced enumeration for nondeterministicautomata, Acta Informatica 26 (1988), 279{284.Since then, proofs of this result have found their way into the following text-books, including:� J. Balc�azar, J. Diaz, J. Gabarr�o: Structural Complexity II, Springer, 1990.� D.P. Bovet, P. Crescenzi: Introduction to the Theory of Complexity,Prentice-Hall, 1994.� E. Gurari: An Introduction to the Theory of Computation, ComputerScience Press, 1989.� C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.� R. Sommerhalder, S.C. van Westrhenen: The Theory of Computability,Addison-Wesley, 1988.An overview of the applications of this sort of counting technique appears in� U. Sch�oning: The power of counting, in A.L. Selman, ed., ComplexityTheory Retrospective, Springer, 1990, 204{223.

5. LOGSPACE, Random Walks on Graphs,and Universal Traversal Sequences
There is a surprising, at �rst glance unexpected, di�erence in (space) com-plexity between the problems of �nding a path from a start node to anend node in a directed graph and of doing so in an undirected graph. Inan undirected graph this is easier to solve; in fact, in can be done using arandom walk or a universal traversal sequence.We denote by L the class of all decision problems that can be solvedusing algorithms that use only logarithmically much space, i.e., L =DSPACE(O(log(n)). In this de�nition we only count the storage space used onthe work tape, not on the (read-only) input tape. Similarly, one can de�ne anondeterministic version of this class: NL = NSPACE(O(log(n)). Whether theinclusion L � NL is strict is an open question. (It has, however, been shownthat NL = coNL, see Topic 4.) Just as in the case of the P = NP question,one can de�ne a notion of completeness for dealing with these classes. Butpolynomial time reductions are meaningless in this case, since NL � P.Exercise 5.1. Why is the running time of every halting NL-computationpolynomially bounded? Why is NL � P? COne must design the notion of reduction with the smaller of the twoclasses in mind (in this case, L). A problem A is said to be log-reducible toproblem B (written A �log B) if there is a logarithmically space-boundedTuring machine with designated (read-only) input and (write-only) outputtapes which are not considered when computing the space usage, such thatfor all x, x 2 A () M(x) 2 B.Exercise 5.2. Show that log-reducibility is a transitive relation. CA problem A0 is called NL-complete if A0 2 NL and for all A 2 NL, A �log A0.Consider the following algorithmic problem:PATH = f(G; a; b) j G is a directed graph and a and b arenodes in G such that there is a pathfrom a to b in G g.Exercise 5.3. Show that PATH (sometimes called GAP, graph accessibilityproblem) is NL-complete.

42 Topic 5Hint: The graph that represents the possible transitions from one con�gura-tion to the next in the NL-computation has polynomial size (in the length ofthe input). Solutions to this exercise and the previous one can be found inmany books on complexity theory. CNow one can ask about the situation with undirected graphs instead ofdirected graphs. We de�neUPATH = f(G; a; b) j G is an undirected graph and a and bare nodes in G such that there is a pathfrom a to b in G g.Often the directed and undirected version of a given problem about graphsare equivalent in the sense of complexity theory. For example, the Hamilto-nian Circuit Problem is NP-complete for directed and for undirected graphs(see Garey and Johnson). The graph isomorphism problems for undirectedand directed graphs are also equivalent under polynomial-time reductions(see K�obler, Sch�oning, Tor�an). In this case, however, there seems to be adi�erence: The NL-completeness proof above does not work for UPATH .Exercise 5.4. Why not? CIt is still the case that UPATH 2 NL, so it is possible that UPATH is an easierproblem than PATH . We will show that a randomized version of UPATH isin L.Let RL denote the class of problems that can be decided by algorithms thatare simultaneously logarithmically space-bounded and polynomially time-bounded and are allowed to make use of random decisions in their compu-tations. The use of these random decisions causes the output of the machineM to be a two-valued random variable. The computation of a problem A isto be understood in the following way:x 2 A) Pr[M accepts x] � 1=2;x 62 A) Pr[M accepts x] = 0:It is clear that L � RL � NL.Perhaps the reader is wondering why we had to require polynomialrunning-time in the de�nition. In the exercises above, we just showed that L-and NL-algorithms only need at most polynomial time. But this is not thecase for randomized log-space machines:Exercise 5.5.� Give a randomized, logarithmic space-bounded algorithm thathas an exponential expected running time.Hint: Have the algorithm repeatedly simulate a random experiment for whicheach trial succeeds with probability only 2�n until there is a successful trial,then halt. C

Random Walks on Graphs 43In fact, it can be shown that the class of all languages accepted by random-ized log-space algorithms (without the polynomial bound on running time)is exactly NL, so the restriction to polynomial running-time is signi�cant.The problems UPATH and PATH may not be in L, since a systematicsearch for a path from a to b would require keeping track of where one hasbeen. If the input graph has n nodes, this would require at least n bits ofstored information, too much for a log-space machine.There is, however, a randomized algorithm that demonstrates thatUPATH 2 RL. This algorithm carries out a random walk on the graph,starting at a. This is continued until, if ever, b is reached. A random walk re-quires less space than a systematic search of the graph: we only need enoughspace to store the number of the current node, i.e. log(n) bits. Of course, wecan no longer avoid nodes being visited more than once.Our random algorithm is the following:INPUT (G; a; b);v := a;FOR i := 1 TO p(n) DORandomly choose a node w adjacent to v using the uniformdistribution;v := w;IF v = b THEN ACCEPT END;END;REJECT;It remains to show that for an undirected graph G, the polynomial p can bechosen in such a way that the de�nition of UPATH 2 RL is satis�ed, namelyso that (G; a; b) 2 UPATH) Pr[M accepts (G; a; b)] � 1=2;(G; a; b) 62 UPATH) Pr[M accepts (G; a; b)] = 0:Exercise 5.6. Show that the given algorithm cannot work for directed graphs.That is, show that there are directed graphs G such that the node b in G isreachable by a random walk, but only with probability 2�n. So the expectedlength of the random walk is 2n, hence not polynomial.Hint: This exercise is very similar to Exercise 5.5. CBy a random walk on a graph G, started at a we mean an in�nite sequenceW = (v1; v2; v3; : : :) with v1 = a and vi+1 chosen randomly (under the uni-form distribution) from among the nodes adjacent to vi. (So fvi; vi+1g mustbe an (undirected) edge in G.) Let Wi denote the �nite subsequence consist-ing of the �rst i nodes in W . For a node v in G we compute the probabilityof the occurrence of v in W asPv = limn!1 jfi � n j v = vigjn :

44 Topic 5From the theory of Markov chains it is clear (by the law of large numbers)that this limit exists and that for a connected graph G, Pv > 0 for all v.1=Pv is the expected value of the distance between adjacent occurrences ofthe node v in W , that is, the mean number of steps it takes for a randomwalk starting at v to return to v.For the moment we will treat each undirected edge fu; vg like two directededges (u; v) and (v; u). We claim that each of these directed edges occurs withprobability 1=2e in a random walk on a connected graphG with e (undirected)edges. It is clear that the sum of these probabilities is 1.If we extend the notation above to edges as well as nodes, then our claimbecomes P(u;v) = limn!1 jfi � n j (vi; vi+1) = (u; v)gjn = 1=2e :Suppose this is not the case. If the edges do not all occur with the sameprobability, then there must be an edge (u; v) that has a larger probabilitythan the mean of the probabilities of its adjacent edges (via node v). Thatis, P(u;v) > 1d(v) � X(v;w)2GP(v;w) ;where d(v) is the degree of the node v.Exercise 5.7. Justify that this inequality follows from the assumption thatthe edges do not all occur with equal probability. CThus if we can show that for all edges (u; v)P(u;v) = 1d(v) � X(v;w)2GP(v;w) ;then by Exercise 5.7 we can conclude that P(u;v) = 1=2e for all edges (u; v).We can see that this is the case as follows: Consider the points in the randomwalk W when the edge (u; v) occurs:W = (: : : ; u; v; : : : ; u; v; : : :) :After v must come an adjacent edge (v; w), and each such edge occurs withequal probability 1=d(v). So W looks likeW = (: : : ; u; v; w1; : : : ; u; v; w2; : : :) ;and the desired equality follows. Thus every directed edge (u; v) occurs withprobability 1=2e, and, therefore, every undirected edge fu; vgwith probability1=e.Every edge of the form (u; v) leads to node v. Every such edge occurs withprobability 1=2e, so the node v occurs with probability d(v)=2v, i.e., Pv =

Random Walks on Graphs 45d(v)=2e. The mean length of a random walk starting at a random node untilthe node v occurs is, therefore, 1=Pv = 2e=d(v).Exercise 5.8. Let X be a random variable that has an expected value andtakes on only non-negative values. Show the following inequality: Pr[X �a] � E(X)=a.Hint: Look in a book on probability under the topic \Markov's inequality."CNow we only have the small step of showing that the length of the randomwalk can be bounded by a polynomial but that each node (in particular, ourdestination node b) will still occur with probability � 1=2. Furthermore, wewill show that there are universal traversal sequences , that is, polynomiallylong sequences of instructions of the form (right, left, left, right, left : : :)which if followed will cause a walk to visit every node in any graph thathas n nodes. (Frequent museum visitors will likely be very interested in thisresult.)Let E(i; j) denote the expected value of the number of steps in a randomwalk from node i to node j. We have already shown that the mean length oftime from one occurrence of v to the next is 1=Pv = 2e=d(v). In this notationwe can express this as E(v; v) = 2e=d(v).Exercise 5.9. Let (u; v) be an edge in G. Show that E(u; v) � 2e. CNow we want an approximation for E(a; b) for any nodes a and b, whichare not necessarily adjacent. Let E(a;G) denote the mean length of a randomwalk starting at a until all the nodes in G have been visited at least once.We assume that G is connected, so that all nodes in G are reachable from a.Then for any a and b in G we have E(a; b) � E(a;G).Let (a = v0; v1; v2; : : : ; vk) be a path in G that starts at a and visits everynode at least once.Exercise 5.10. Show that in a connected graph with n nodes there is alwayssuch a path of length k � 2n. CNow we can give a very rough approximation for E(a;G) by consideringthe mean length of a random walk that �rst goes from a to v1 (in one or moresteps), then wanders to v2, then v3, etc and in this way eventually arrives atvk. From this we getE(a;G) � kXi=1 E(vi�1; vi) � 2n � 2e = 4en :Exercise 5.11. Show that from this inequality it follows that the probabilitythat a �xed node b in G is not visited in a random walk that starts at a andproceeds for 8e steps is at most 1=2.Hint: Use Exercise 5.8. C

46 Topic 5Now we put everything together: On input (G; a; b), where G is an undi-rected graph with n nodes and e edges, we simulate a random walk of length8e. If there is no path from a to b, then this algorithm cannot possibly �ndone. If there is such a path, i.e., G(a; b) 2 UPATH , then this algorithm �ndsone with probability at least 1=2.To reduce the probability that a path exists but is not found, this randomexperiment can be repeated or, equivalently, the the length of the randomwalk can be increased. If the length of the random walk is m � 8e, (i.e., mrepetitions of the experiment), then the probability of overlooking an existingpath is reduced to at most 2�m.The ability to drastically increase the probability of success while main-taining a polynomially long random walk (often referred to as probabilityampli�cation) is the key to the existence of a universal traversal sequence. Ad-regular graph is a connected graph in which each node has degree at mostd. Clearly, any d-regular graph has e � dn=2 edges. We order the � d edgesleaving a given node arbitrarily and assign each a number 0; 1; : : : ; d � 1.(Note that each edge (u; v) has two numbers, one with respect to each of uand v.) By a universal traversal sequence (for d-regular graphs) we mean asequence I = (i1; i2; : : : ; ik) with ij 2 f0; 1; : : : ; d � 1g, such that for any ofthese graphs and any choice of starting nodes, the graph is traversed via I ,in the sense that at each step the choice of the next node to visit is madeaccording to I and the numbering of the edges leaving the current node, andthat all nodes of the graph are visited.A randomly chosen sequence I = (i1; i2; : : : ; ik) where each ij is chosenindependently at random under the uniform distribution on f0; 1; : : : ; d� 1gdescribes precisely a random walk. We have already seen that the probabilitythat a random walk of length k = m � 8en � m � 4dn2 does not completelytraverse a graph G is at most 2�m. So if g is the number of labeled d-regular graphs (with the labeling described above) and we choose m so largethat 2�m � g < 1, then the probability that a randomly chosen sequenceis a universal traversal sequence is positive, which means at least one suchsequences must exist. But how large must m be?Exercise 5.12. Show that the number of labeled d-regular graphs is at mostndn. CSince 2�m � g < 1 () 2�m � ndn < 1() �m+ dn � logn < 0() m > dn � logn ;there must exist a universal traversal sequence for all d-regular graphs withn nodes that has length (dn logn)4dn2 = O(n3 logn).

Random Walks on Graphs 47References� R. Aleliunas, R.M. Karp, R.K. Lipton, L. Lov�asz, C. Racko�: Randomwalks, universal traversal sequences, and the complexity of maze prob-lems, Proceedings of Symposium on Foundations of Computer Science,IEEE, 1979, 218{223.� M. Garey, D. Johnson: Computers and Intractability, Freeman, 1979.� J. K�obler, U. Sch�oning, J. Tor�an: The Graph Isomorphism Problem { ItsStructural Complexity, Birkh�auser, 1993.� M. Sipser: Lecture Notes, 18.428, MIT, 1985.

48 Topic 5

6. Exponential Lower Boundsfor the Length of Resolution Proofs
The resolution calculus is one of the most commonly used methods intheorem proving. For a long time an exponential lower bound for the lengthof such proofs was sought. In 1985 this was �nally proven by Haken.The resolution calculus operates on sets of clauses. A clause is a disjunction(OR) of literals. A literal is a variable or its negation. A set of clauses isunderstood to represent a conjunction (AND) of the clauses. Altogether thiscorresponds to a formula in disjunctive normal form.Example. The set of clausesf fx1; x2; x3g; fx1; x2g; fx2; x3g; fx2g gcorresponds to the formula(x1 _ x2 _ x3) ^ (x1 _ x2) ^ (x2 _ x3) ^ x2 :Exercise 6.1. Make a truth table for this formula. Is the formula satis�able?CIn each resolution step of a resolution proof two (previously derived orgiven) clauses, K1 and K2, are combined to derive a new clause K3. This ispossible only if there is a variable xi that occurs positively in one clause andnegatively in the other. The resolvent K3 is then K1 [K2 � fxi; xig. Thenotation for this is

K2K1 bbbb���� K3

50 Topic 6Example. fx1; x2; x3; x4; x5; x6gfx1; x2; x3; x5g QQQQ���� fx1; x3; x4; x5; x6gIn the example above, the resolution is done on variable x2, since x2 occursin the upper clause and x2 in the lower one. After resolution, x2 does notoccur in the resulting clause (but it may occur again later in the resolution).Several resolution steps can be represented by an acyclic graph. The goalof the resolution proof is to derive ;.Example. (continued from above)
fx2gfx2; x3gfx1; x2gfx1; x2; x3g QQQ��� fx2; x3gQQQ��� fx3g

SSSSS������ fx2g((((((((((((((((((PPPP ;
The resolution calculus is sound and complete for refutation. That is, ifa set of clauses F has a resolution proof that leads to the empty clause,then F is unsatis�able (soundness), and if F is unsatis�able, then there is aresolution proof that leads to the empty clause (completeness).Exercise 6.2.� Prove this.Hint: The proof of soundness can be done by induction on the length of theresolution proof; the proof of completeness can be done by induction on thenumber of variables that occur in the clause. CNow suppose we are given a resolution proof. Furthermore, let � be anarbitrary assignment of the variables that occur. Then � uniquely determinesa path through the resolution proof { from one of the original clauses to theempty clause { so that for each clause K along this path, �(K) = 0.

The Length of Resolution Proofs 51Example. Let �(x1) = �(x2) = �(x3) = 1. Then the path determined by �in the resolution proof above is indicated below.
fx2gfx2; x3gfx1; x2gfx1; x2; x3g QQQ��� fx2; x3gQQQ��� fx3g

SSSSS������ fx2g((((((((((((((((((PPPP ;��� SSSSS PPPP��� SSSSS PPPP��� SSSSS PPPP
Exercise 6.3. Justify the claim that for each such � there is a path throughthe resolution proof from one of the original clauses to the empty clause andthat this path is unique.Hint: Construct the path by starting from the empty clause and workingbackwards toward one of the original clauses. CA sound and complete proof system for refutation, like resolution, can beviewed as a nondeterministic algorithm that works in the following way:INPUT F ; (� the formula to refute �)REPEATNondeterministically choose one possible proof step andadd it to the proof that has been constructed so far;UNTIL unsatis�ability of F is established by the proof;OUTPUT unsatis�able and accept;where the test in the REPEAT-UNTIL loop is required to run in time thatis polynomial in the length of the proof. Such an algorithm accepts (in thenondeterministic sense) precisely the set of unsatis�able formulas, i.e. SAT .In the theory of NP-completeness, one de�nes the time complexity of anondeterministic algorithm to be the least possible number of steps (undersome choice of the nondeterministic decisions) in which the result (in this caseestablishing the unsatis�ability of a formula) can be reached. So in this case,the nondeterministic time complexity corresponds precisely to the length ofthe shortest possible proof in some calculus. We call a (sound and complete)proof system a SUPER proof system if there is a polynomial p so that thealgorithm above on an input of length n makes (more exactly: can only make)at most p(n) passes through the loop before arriving at a result. Or, formu-lated di�erently, a proof system is SUPER if for every unsatis�able formulaF of length n there is a proof of the unsatis�ability of F that is at mostpolynomially long (in n).

52 Topic 6Exercise 6.4. Show that NP = coNP if and only if there is a SUPER proofsystem for refutation.Hint: Use the fact that SAT is NP-complete. CIs the resolution calculus a SUPER proof system? If so, then by the ex-ercise above it would follow that NP = coNP, which would be spectacularand contradict most conjectures. On the other hand, if we can show thatresolution is not a SUPER proof system, then this is an interesting result,but it does not have any immediate, direct implications for the NP =?coNPproblem. In the remainder of this chapter we will prove this interesting result.Theorem 6.1. The resolution calculus is not a SUPER proof system.Proof. First we will de�ne for each n a formula, i.e., a set of clauses, thatexpresses the pigeonhole principle: n+1 pigeons do not �t into n pigeonholesin such a way that no hole contains more than one pigeon.1 The variable xi;j(i 2 f1; : : : ; ng and j 2 f1; : : : ; n+ 1g) will be used to express that pigeon jis in pigeonhole i. The set of clauses PHPn consists of:� Type 1 clauses:fx1;1; x2;1; : : : ; xn;1g, fx1;2; x2;2; : : : ; xn;2g, : : :,fx1;n+1; x2;n+1; : : : ; xn;n+1g,and� Type 2 clauses:fx1;1; x1;2g; fx1;1; x1;3g; : : : ; fx1;1; x1;n+1g; fx1;2; x1;3g; : : : ; fx1;n; x1;n+1g;fx2;1; x2;2g; fx2;1; x2;3g; : : : ; fx2;1; x2;n+1g; fx2;2; x2;3g; : : : ; fx2;n; x2;n+1g;...fxn;1; xn;2g; fxn;1; xn;3g; : : : ; fxn;1; xn;n+1g; fxn;2; xn;3g; : : : ; fxn;n; xn;n+1gThe type 1 clauses express that each pigeon is in at least one hole. The type2 clauses express that each hole contains at most one pigeon (literally, eachhole does not contain a pair of distinct pigeons).It is clear that for each n, PHPn is unsatis�able. Our goal is to showthat every resolution proof of this fact must have length at least cn for someconstant c > 1. Since the number of variables in PHPn is quadratic in nand the number of clauses is O(n3), it follows from this that the resolutioncalculus is not SUPER.For the proof we use n�(n+1) matrices to represent the clauses in PHPnand their resolvents. The n rows represent the n holes and the n+1 columns1 Translation note: In German, the pigeonhole principle is called the Schubfach-prinzip, literally the drawer principle, and the original examples here includedthe pigeon example and the following: n+1 socks do not �t in n drawers in sucha way that no drawer contains more than one sock. Also, the English expression\pigeonhole" probably does not refer to bird houses, but to a certain type ofmail slots (common in many university department o�ces) which are also calledpigeonholes. So that a better example would perhaps be to replace pigeons withletters, but we will continue with pigeons, as in the original.

The Length of Resolution Proofs 53the n+1 pigeons. We will place a � in position (i; j) if the literal xi;j occursin the clause and a 	 in position (i; j) if the literal xi;j occurs in the clause.Exercise 6.5. Draw the representation of PHP3 in this scheme. CAnalogously, we can represent assignments to variables in this rectanglenotation scheme: we place a b 2 f0; 1g in position (i; j) if the variable xi;jshould have the value b. We will call an assignment critical if n of the n+ 1pigeons have been assigned distinct holes, so that all n holes contain a pigeon.In other words, an assignment is said to be critical if for every i (hole) thereis a j (pigeon) with �(xi;j) = 1 and also for every j there is at most one iwith �(xi;j) = 1.Exercise 6.6. Draw a 5 � 6 matrix that represents an arbitrary critical as-signment. CExercise 6.7. Let n be �xed. How many critical assignments are there? CIn the matrix representation of a critical assignment there will be a columnin which there are only 0's; we will call this column the 0-column of the criticalassignment.Exercise 6.8. A critical assignment always satis�es all clauses of PHPnexcept for one, which one? CAssume we have a resolution proof that demonstrates the unsatis�abilityof PHPn, represented as an acyclic graph. Let � be a critical assignment.We apply the construction of Exercise 6.3, which produces for each suchassignment a unique path connecting one of the original clauses with theempty clause such that for each clause K along this path �(K) = 0.Exercise 6.9. The path associated with � can only connect the empty clausewith one of the original clauses in PHPn. Which one? CNow we put everything together. Every critical assignment � has a 0-column. The unique path through the resolution proof of PHPn determinedby � connects a clause of PHPn with the empty clause. This clause in PHPnmust be the type 1 clause that has �'s in the 0-column of �.Consider a 4 � 5 example (so n = 4). Let � be the following criticalassignment: 0100 1000 0010 0000 10006The arrow indicates the 0-column of �.

54 Topic 6The next diagram indicates the path in the resolution proof associatedwith �.
�����������������������

����HHHHHHHHH
HHHHHHHH ;ZZ���bbbb

HHHH��ZZ���bbbb

HHHH��ZZ���bbbb

HHHH��ZZ���bbbb

HHHH��

The leftmost clause contains n �'s. The empty clause at the end has none.A resolution step can only eliminate at most one of these �'s. So there mustbe a clause along this path that has exactly n=2 �'s in the 0-column of �.
�����������������������

����HHHHHHHHH
HHHHHHHH ;��ZZ ���HHHH ZZ ���HHHH ZZ ���HHHH ZZ ���HHHH

Of course, the remaining columns of this clause can (and must) also havechanged, but for the moment we are only interested in the 0-column. So wehave shown that for every critical assignment � there is a clause K in theresolution proof that has exactly n=2 �'s in the 0-column of � and that�(K) = 0.Now imagine the clauses of the resolution proof to be linearly ordered insuch a way that resolvents always occur later in the list than their parentclauses. (Such an ordering is a topological ordering of the acyclic graph ofthe proof). The last clause of this order must be the empty clause. For every

The Length of Resolution Proofs 55critical assignment �, let K[�] be the �rst clause K in this ordering that hasexactly n=2 �'s in the 0-column of � and for which �(K) = 0. (This clauseis not necessarily the clause constructed above in our proof of the existenceof such a clause.)Exercise 6.10. Show that the clauseK[�], which has n=2 �'s in the 0-columnof �, has no 	's in this column. CNext we want to consider partial assignments, i.e., assignments that donot assign a value to all of the variables. We are only interested in partialassignments that can be extended to critical assignments. That is, the partialassignments that interest us cannot have two 1's in the same row or column.In what follows we will consider only partial assignments that in addition tobeing extendible to a critical assignment also have the property that exactlyn=8 of the positions are assigned a 1. (For simplicity we will assume thatn is divisible by 8.) In order to make these partial assignments notationallydistinguishable from critical assignments, we will use capital letters for thepartial assignments. Let S be a partial assignment (with the restrictionsas mentioned). We let KS denote the �rst clause in the proof sequence ofthe form K[�] such that S can be extended to �. In this way, every partialassignment S is assigned a critical assignment �, namely one for whichK[�] =KS . From now on we will call the clauses of the form KS complex clauses.The proof strategy is now the following: We will show that if a resolutionproof is \too short" then it must contain an error. Suppose there is a res-olution proof P for PHPn that is \too short," where for the length of theproof P we only count the number of complex clauses that occur. Supposethis number is less than cn for some constant c > 1 to be determined later.Then a certain greedy algorithm, which we will give below, with the set ofcomplex clauses in P as input will �nd a partial assignment S that satis�esall of these complex clauses. (That is, the n=8 1's in S will be in positionssuch that for each of the complex clauses at least one of these positions con-tains a �.) Starting with this partial assignment S, as described above, weproduce a complex clause KS = K[�] in P for some � with �(KS) = 0. Butthis is a contradiction, since S makes all of the complex clauses in P true.Thus KS represents an error in the proof, and all correct proofs must be\long enough."In order to carry out this argument with our greedy algorithm, we mustshow that every complex clause must necessarily have, in addition to then=2 �'s in the 0-column, other �'s in other columns. In fact, there must beso many that we can always assume that there are at least
(n2) �'s. Theexistence of this many �'s simpli�es the argument, that n=8 1's can be �xedso that all complex clauses become true.

56 Topic 6Consider an 8� 9 example. A partial assignment S must in this case �xn=8 = 1. Assume that the 1 is in position (1; 1). Let KS = K[�] for some �that extends S. Furthermore, suppose that �(x2;2) = 1; : : : ; �(xn;n) = 1. The0-column in this case is n+ 1. (Unspeci�ed values in the diagram below are0.) 1 1 1 1 1 1 1 1
66

60-column
�S

The corresponding complex clause KS = K[�] has exactly n=2 = 4 �'s incolumn n+ 1. For simplicity, we draw them at the bottom:
���� KS

Exercise 6.11. Show that there must be at least 3n=8 1's in the diagram for� that are neither in the same row as a � in the 0-column of KS nor �xedby S. CNow select an arbitrary 1 from among these 3n=8 many and change � to0 at this location. At the same time, change the 0 in the same row of the0-column to a 1. The result is another critical assignment ��, for which the0-column is the column in which a 1 was changed to a 0. If we carry thisprocedure out using the 1 in column 4 of our example, we get the followingtransformation:

The Length of Resolution Proofs 571 1 1 0 1 1 1 1
66 1

60-column ��S
Claim. Now we claim that all 3n=8 columns in which 1's of the type describedin the last exercise occur are \good" columns. (In our example this wouldinclude, among others, column 4.) A good column is one in which either thereis exactly one 	 or at least n=2 �'s.Proof (of the claim). First note that no column of KS can contain two 	's.Exercise 6.12. Why? CNow consider one of the 3n=8 columns mentioned in the claim and supposethat this column is not good. Let this be column j. Then there must be no	's and fewer than n=2 �'s in this column. In this case, the transformationfrom � to �� (using this column) does not change the truth value; it is stillthe case that ��(KS) = 0.Exercise 6.13. Justify this. CNow we can construct a path backwards from the clause KS to one of theoriginal clauses so that for each clause K along this path ��(K) = 0. As inExercise 6.9, this path must lead to a clause of type 1 in which the column jis �lled with �'s. So at the end of this path we have a clause with more thann=2 �'s. Somewhere strictly between there must be a clause with exactlyn=2 �'s in column j. This is a clause of the same form as K[��] (perhapsK[��]). Since K[��] is de�ned to be the �rst clause of this type that occursin the proof P , K[��] must come strictly before KS . But since �� is also anextension of S, and KS was chosen to be at the �rst possible position in theproof, this is a contradiction; KS should have been chosen to be K[��]. Thusevery complex clause has at least 3n=8 + 1 \good" columns (including the0-column). utNow suppose that P is a resolution proof for the unsatis�ability of PHPnand fK1;K2; : : : ;Ktg are the complex clauses that occur in P . We modifythe sequence fKig to a sequence K 0i: in every column that contains a 	 (thiswill be a \good" column) we strike the 	 and �ll the rest of the column(except for the position of the original) with �. For any partial assignmentS, if S(K 0i) = 1, then S(Ki) = 1.The sequence (K 01;K 02; : : : ;K 0t) is the input for the following greedy algo-rithm. This algorithm \tries" to construct a partial assignment S such that

58 Topic 6the n=8 1's in S are su�cient to force that S(K 0i) = S(Ki) = 1. In particular,this will also be the case for any extension of S to a critical assignment. Butthis would be a contradiction, since for each complex clause KS (which is inthe input list) there must be an � for which KS = K[�] and �(KS) = 0.We will see that this contradiction always arises if t is \too small." Thusthe number of complex clauses in P and, therefore, the length of P itselfmust be large enough.PROCEDURE Greedy(M : Set of clauses): partial assignment;VARS : partial assignment;E : set of matrix positions;k; i; j : CARDINAL ;BEGINS := empty assignment;E := all positions;FOR k := 1 TO n=8 DOFind the positions (i; j) in E, where the most clausesin M have a �;Expand S by (i; j);Strike from M those clauses that have � in position (i; j);Strike from E row i and column j;END;RETURN S;END Greedy;Now we analyze the algorithm. The initial situation is that M containsthe t complex clauses given as input. By the discussion above, each of thesecomplex clauses must have at least (3n=8+1) � (n=2) �'s. E initially containsall n �(n+1) positions. This means that in the �rst step the fraction of clausesthat are \taken care of" (i.e., for which their value under S is determined tobe 1) is at least(3n=8 + 1) � (n=2)n � (n+ 1) � (3n=8) � (n=2)n2 = 316 � 0:1875 :Exercise 6.14. Justify this. COf course, the fraction of clauses that can be \taken care of" decreaseswith each step, since row i and column j are stricken. After k passes throughthe loop, the ratio of remaining �'s to the size of E is(3n=8 + 1� k) � (n=2� k)(n� k) � (n+ 1� k) � (3n=8� k) � (n=2� k)(n� k)2 :This quotient is smallest at the last pass through the loop. We get a lowerbound by taking only this last ratio, when k = n=8:

The Length of Resolution Proofs 59(3n=8� n=8) � (n=2� n=8)(n� n=8)2 = 649 � 0:1224 :Let Mi be the set of remaining clauses in M after the ith pass through theloop. Then jMij � jMi�1j � 649 � jMi�1j = 4349 � jMi�1j :This yields the approximation jMij � (4349)i � jM0j. Now we hope that the lineof argumentation outlined above actually works, i.e., that jMn=8j = 0. It issu�cient to show that jMn=8j < 1, since jMn=8j is an integer. This is the caseprovided (4349)n=8 � jM0j < 1, or equivalently if jM0j < [(4943)1=8]n = cn wherec = 1:01646:::In summary, if the number of complex clauses that are given as input tothe greedy algorithm is less than cn, then the algorithm succeeds after n=8passes through the loop in constructing a partial assignment S that makes allclauses in the input true. However, we have also seen that starting with thispartial assignment we can �nd a complex clause that does not have the value1 under S, since there is an extension � of S that makes the clause false. Thiscontradiction implies that all resolution proofs of PHPn must have at leastcn complex clauses. ut� � � � �A computer generated proof of PHP3 appears at the end of this chapter.In its search for a proof, the computer generated 1006 clauses (including theinput clauses 1{22), 91 of which are required for the proof.ReferencesThe notion of a SUPER proof system and its relationship to the NP =?coNPproblem originated with� S. Cook, R. Reckhow: The relative e�ciency of propositional proof sys-tems, Journal of Symbolic Logic 44 (1979), 36{50.After the problem had been worked on since the 70's, the proof of an expo-nential lower bound for the resolution calculus was �rst achieved in 1985:� A. Haken: The Intractability of Resolution, Theoretical Computer Science39 (1985), 297{308.The proof given here follows a somewhat more elegant technique of� S. Cook and T. Pitassi: A Feasible Constructive Lower Bound for Reso-lution Proofs, Information Processing Letters 34 (1990), 81{85.but improves on the lower bound stated there.

60 Topic 6-------- PROOF ---------1 -p11 | -p12.2 -p11 | -p13.3 -p11 | -p14.4 -p12 | -p13.5 -p12 | -p14.6 -p13 | -p14.7 -p21 | -p22.8 -p21 | -p23.9 -p21 | -p24.10 -p22 | -p23.11 -p22 | -p24.12 -p23 | -p24.13 -p31 | -p32.14 -p31 | -p33.15 -p31 | -p34.16 -p32 | -p33.17 -p32 | -p34.18 -p33 | -p34.19 p11 | p21 | p31.20 p12 | p22 | p32.21 p13 | p23 | p33.22 p14 | p24 | p34.23 [res:19,3] p21 | p31 | -p14.24 [res:19,2] p21 | p31 | -p13.25 [res:19,1] p21 | p31 | -p12.26 [res:19,9] p11 | p31 | -p24.27 [res:19,8] p11 | p31 | -p23.30 [res:19,14] p11 | p21 | -p33.32 [res:20,5] p22 | p32 | -p14.33 [res:20,4] p22 | p32 | -p13.34 [res:20,1] p22 | p32 | -p11.41 [res:21,6] p23 | p33 | -p14.42 [res:21,4] p23 | p33 | -p12.43 [res:21,2] p23 | p33 | -p11.52 [res:22,3] p24 | p34 | -p11.53 [res:22,12] p14 | p34 | -p23.54 [res:22,11] p14 | p34 | -p22.55 [res:22,9] p14 | p34 | -p21.57 [res:22,17] p14 | p24 | -p32.60 [res:23,8] p31 | -p14 | -p23.77 [res:25,14] p21 | -p12 | -p33.82 [res:26,13] p11 | -p24 | -p32.84 [res:27,15] p11 | -p23 | -p34.97 [res:32,10] p32 | -p14 | -p23.98 [res:32,7] p32 | -p14 | -p21.107 [res:33,7] p32 | -p13 | -p21.113 [res:34,11] p32 | -p11 | -p24.114 [res:34,10] p32 | -p11 | -p23.160 [res:41,16] p23 | -p14 | -p32.161 [res:41,14] p23 | -p14 | -p31.181 [res:43,16] p23 | -p11 | -p32.265 [res:52,18] p24 | -p11 | -p33.

277 [res:53,17] p14 | -p23 | -p32.289 [res:54,15] p14 | -p22 | -p31.298 [res:55,18] p14 | -p21 | -p33.299 [res:55,17] p14 | -p21 | -p32.337 [res:60,13] -p14|-p23|-p32.888 [res:337,277] -p23 | -p32.889 [res:337,160] -p14 | -p32.890 [res:337,97] -p14 | -p23.891 [res:888,181] -p32 | -p11.894 [res:888,114] -p23 | -p11.897 [res:889,299] -p32 | -p21.899 [res:889,57] -p32 | p24.900 [res:889,98] -p14 | -p21.903 [res:890,53] -p23 | p34.904 [res:890,161] -p14 | -p31.907 [res:891,113] -p11 | -p24.909 [res:891,82] -p32 | -p24.914 [res:894,43] -p11 | p33.915 [res:894,84] -p23 | -p34.918 [res:897,107] -p21 | -p13.923 [res:900,298] -p21 | -p33.932 [res:904,289] -p31 | -p22.939 [res:907,265] -p11 | -p33.944 [res:909,899] -p32.946 [res:944,20] p12 | p22.953 [res:915,903] -p23.954 [res:953,42] p33 | -p12.955 [res:953,21] p13 | p33.957 [res:918,24] -p13 | p31.959 [res:923,77] -p33 | -p12.960 [res:923,30] -p33 | p11.975 [res:939,914] -p11.995 [res:959,954] -p12.997 [res:995,946] p22.1001 [res:997,932] -p31.1002 [res:1001,957] -p13.1003 [res:1002,955] p33.1004 [res:960,1003] p11.1006 [res:1004,975] .------- end of proof --------

7. Spectral Problems and DescriptiveComplexity Theory
This chapter begins with a question from predicate logic, namely to deter-mine the set of all (sizes of) �nite models of a given formula. It turns outthat there is an amazingly close relationship between this question and theworld of P and NP.In this chapter we want to discuss formulas in predicate logic. These formulasare built up from atomic formulas. There are two kinds of atomic formulas.One type has the form P (x1; : : : ; xk), where P is a predicate symbol with arityk, and each xi is a variable. The other possibility for an atomic formula is aformula of the form xi = xj .Atomic formulas are the simplest formulas. More complex formulas arebuilt up from the atomic formulas. Given two formulas G and H , we canform boolean combinations, for example(G ^H); (G _H); (G! H); (G$ H); (:G) :Let x be a variable, then by (existential or universal) quanti�cation overx we obtain from G the new formulas9xG; 8xG :An occurrence of the variable x in a formula G is called bound if it occurs ina subformula of F of the form 9xG or 8xG. Otherwise an occurrence of thevariable x is said to be free. In this topic we are only interested in formulasin which all occurrences of x are bound. Such formulas are called sentences.A sentence can be assigned a truth value by \interpreting" the sentencein a given structure A. A structure (suitable for interpreting the sentence F)consists of a non-empty set (the universe) of values for the variables thatoccur in F , and concrete predicates for each predicate symbol that occurs inF , i.e., relations on the universe of the appropriate arity. The truth value A(F)of the formula F is determined recursively on the structure of the formula:� If the formula is a boolean combination of subformulas G and H , then onedetermines recursively the truth values A(G) and A(H) and combines thesevalues according to the usual boolean operations (i.e., truth tables).

62 Topic 7� If F has the form 9xG then A(F) is true if and only if there is a value win the universe such that G, interpreted under A with x interpreted as w,is assigned the value true. (See the instructions below regarding assigningtruth values to atomic formulas for more about the substitution of w forx.)If the formula F has the form 8xG then we replace \there exists" with\for all" in the instructions above.� If the formula is an atomic formula, then in general it contains variables.(Note that this case does not occur for sentences themselves, since allvariables in a sentence are bound by quanti�ers, but it occurs \inside therecursion" { in fact, it is the base case of the recursion.) In the previouslyexecuted recursive steps, each variable in a sentence will have been assigneda value from the universe. Therefore we can evaluate this atomic formuladirectly using the interpretations of the predicates given by A. (The equalssign is always interpreted as identity on the universe.)If A(F) is true we write A j= F . In this case A is said to be a model for F .A particular structure is denoted in tuple form: A = (M ;R1; : : : ; Rm), whereM is the universe and each Ri is a relation on the universe which is used tointerpret the predicate Pi. A formula can have �nite or in�nite models (ornone at all), where the size of a model is measured by the size of the universe,jM j. We let jAj = jM j denote the size of a model A with universeM . In whatfollows, we are interested in the set of all (sizes of) �nite models for a givenformula. LetSpectrum(F) = fn 2 N j there is a model A with jAj = n and A j= F g :In 1952, H. Schulz posed the problem (the so-called spectral problem) of char-acterizing the set of all such spectra. And in 1955, G. Asser posed the questionof whether the class of all spectra is closed under complement.Example. Let F be a predicate logic formula that formalizes the axioms for a�eld. (In the usual de�nition of a �eld, a �eld is speci�ed by its underlying setand two functions on that set. Since we have not allowed function symbols inour language, we must modify the usual de�nition slightly. Candidates for a�eld are structures A = (M ;R�; R+), where R�; R+ are each 3-ary relationsexpressing the equations x�y = z and x+y = z, respectively.) A subformulaof F that formalizes the associative law for �eld multiplication would thenbe8x8y8z8u8v8w18w2 (R�(x; y; u) ^R�(u; z; w1) ^ R�(y; z; v) ^ R�(x; v; w2))! w1 = w2 :Other subformulas of F would have to express the other �eld axioms as wellas the fact that the relations R� and R+ are functions, i.e., that the valuesof the �eld operations are unique. The set of all models of F would then be

Spectral Problems 63the set of all �elds. From algebra we know that there is a �nite �eld of sizen if and only if n is a prime power. SoSpectrum(F) = fn j n is a prime power g :Exercise 7.1. Give a formula for which Spectrum(F) = N � f0g. CExercise 7.2. Give a formula for which Spectrum(F) = f3g. CGeneralizing the previous exercise we see immediately that every �nite subsetof N is the spectrum of some sentence.A �nite structure can be coded as a string, just as is commonly done incomplexity theory with other types of objects (e.g., graphs). For example,the structure A = (M ;R1; : : : ; Rm), with jAj = jM j = n, can be coded as1n0r1r2 : : : rm ;where ri is a 0-1 string of length nk and Ri is the interpretation of a k-ary predicate Pi. This string describes the relation Ri \bit for bit" (as acharacteristic sequence) on the universe. Note that we have not coded in thearity of the predicates { it is implicit in the syntax of the formulas { but thiscould be easily done.Exercise 7.3.� Use the recursive description for evaluation of A(F) to givefor every sentence F an algorithm that on input A determines in polynomialtime whether A j= F . (In other words, show that for all sentences F in �rst-order predicate logic, the set Models(F) = fA j A j= F and A is �niteg is inP.) COn the other hand, one can ask if for every language L 2 P there is aformula F so that the models of F are precisely the strings x 2 L. But this isnot the case; there are languages in P that cannot be described in this senseby sentences in �rst-order predicate logic. In fact, Immerman has shown thatthe class of languages described by sentences of �rst-order predicate logic(under certain additional technical assumptions) is precisely the class AC0.Symbolically this is expressed as FO = AC0. (FO stands for �rst-order. Formore information about the class AC0 see Topics 11 and 12.)It follows immediately from Exercise 7.3 that for every formula F the setSpectrum(F) over the alphabet f0g (i.e., with all numbers coded in unary)is in NP. If we code the numbers in binary then the strings are only logarith-mically as long, so in this case Spectrum(F) 2 NEXP = Sc>0NTIME(2cn).Exercise 7.4. Justify the last statement. CThe set Spectrum(F) codes the information about the sizes of modelsfor F . This is very crude information about F . In what follows we want to

64 Topic 7use a language that expresses somewhat more information about F . Observe�rst that F has a model A = (M ;R1; : : : ; Rm) (where P1; : : : ; Pm are thepredicate symbols that occur in F) if and only if the formulaG = 9P1 : : : 9Pm Fhas (M) { a model consisting only of a universe, only the size of whichreally matters { for a model. The formula 9P1 : : : 9Pm F is a formula insecond-order predicate logic, which means that we may quantify not onlyover variables but also over predicate symbols, and hence over relations onthe universe. The semantics of such a formula are de�ned in the expectedway: relations corresponding to the predicate symbols Pi must exist over theuniverse that make the formula F true. Since the predicate symbols are nowbound by the quanti�cation, they no longer require interpretations as part ofthe model A for G.Now we modify the formula (and the underlying question about the ex-istence of models) in the following way: some of the predicate symbols maybe bound by quanti�ers, others (for simplicity we will consider just one) mayoccur freely in G: G = 9P1 : : : 9Pm F (P; P1; : : : ; Pm) :The notation F (P; P1; : : : ; Pm) is intended to indicate that exactly the predi-cate symbols P; P1; : : : ; Pm occur in F . A model forG now must have the formA = (M ;R), where R is a relation over the universe M of the appropriatearity. We assign to this formula G the set of all of its modelsModels(G) = fA j A j= G & A is �niteg ;which is sometimes called the generalized spectrum of G.Exercise 7.5. We want to consider the question of what complexity thelanguage Models(G) has for this type of second-order formula G, where thesecond-order quanti�ers are only existential (and occur before all �rst-orderquanti�ers).Show that Models(G) 2 NP.Hint: Make a small modi�cation to the observation above that Spectrum(F){ coded in unary { is in NP. CAs we will show below, this time the converse is also true: A language Lis in NP if and only if there is such a (second-order, existentially quanti�ed)formula G such that L = fx j Ax j= Gg. For this we assign to each stringx a structure Ax which codes x in a certain way. In this sense { ignoringissues of coding { the set of all models of second-order existential formulasis the class NP. This fact is expressed succinctly as NP = SO9. The amazingthing about this result is that it gives an exact characterization of the classNP solely in terms of expressibility in a certain logic. There is no mention of

Spectral Problems 65Turing machines, computations, running times or polynomials. Descriptivecomplexity theory deals with the question of which complexity classes can becharacterized in such a way and whether it may be possible to prove that twosuch classes are distinct using only methods from model theory.It is instructive (and for what follows useful) to reprove the previousexercise (SO9 � NP) in a di�erent way, namely via a polynomial reduc-tion to SAT. For this we must reduce an arbitrary structure A = (M ;P)(appropriate for a formula G) in polynomial time to a boolean formula �.The construction will, of course, make use of G. But note that G is �xedand A is the input, so the algorithm must only be polynomial in jAj. LetG = 9P1 : : : 9Pm F (P; P1; : : : ; Pm), and let A = (M ;P) be a suitable struc-ture. The �rst-order part of G is the formula F , where the predicate symbolsP; P1; : : : ; Pm occur. The interpretation of P is given by A, but the existenceof predicates fPig that make F true is the question. Let M = f1; 2; : : : ; ng. We replace step by step every subformula of F of the form 9xF 0 withF 0(x=1)_ � � �_F 0(x=n), where F 0(x=i) denotes that for every free occurrenceof x in F 0 we replace x with i. (This is a purely syntactic process.) Similarly,every subformula of the form 8xF 0 is replaced by F 0(x=1) ^ � � � ^ F 0(x=n).The resulting formula (a substitute for the formula F) contains no quanti�ersor variables; all of the variables have been replaced by constants. The atomicformulas in the new formula have three possible forms:P (i1; : : : ; il) (�)(i = j) (�)Pi(i1; : : : ; ik)(l and k are the arities of the predicate symbols involved.) The atomic formu-las of the forms marked with (�) can be evaluated directly using the structureA. This can be used to simplify the formula. Furthermore, every atomic for-mula of the form Pi(i1; : : : ; ik) can be made true or false independently ofevery other one. So each Pi(i1; : : : ; ik) can be considered as a name for aboolean variable. Now we are just looking for a satisfying assignment to aboolean formula, which will exist if and only if A j= G. Since the construc-tion requires only polynomial time, what we have described is nothing otherthan a reduction to SAT.What is interesting here is that the structure of the formula F is reectedin a certain way in the resulting formula �. If we assume that the formulaF has the form F = 8x1 : : :8xlH , where H is quanti�er free and a Hornformula (i.e., H is in conjunctive normal form and each clause contains atmost one positive literal), then the formula � given by the reduction is alsoa Horn formula.1 For Horn formulas, the satis�ability problem is known tobe solvable in polynomial time: SAT \Horn 2 P. So1 In fact, it is su�cient in this context if only the portions of the formula consistingof the literals Pi(i1; : : : ; ik) form a Horn formula but the input predicate or theorder relation do not.

66 Topic 7SO9 \Horn � P :� � � � �Now we want to turn our attention to the reverse direction, which stronglyresembles the proof of Cook's theorem. Let L be a language in NP. So there isa nondeterministic Turing machineM that accepts the language L in polyno-mial time. Let the number of nondeterministic steps needed by M on inputsof length n be bounded by the polynomial nk. Without loss of generalitywe can assume that the machine never visits tape cells to the left of the in-put. Let � be the work alphabet of the Turing machine, and let the inputalphabet be f0; 1; g � �. Furthermore, let Z be the set of states. Then con-�gurations of M can be described as strings of length nk over the alphabet� = � [(Z ��): The stringa1 a2 : : : ai�1 (z; ai) ai+1 : : : ankcodes that the tape contents of M at a given time are precisely a1 : : : ank ,the head is located at position i and the state is z. An accepting computationof M on input x with jxj = n and x = x1 : : : xn, can be represented by annk � nk matrix with entries from � :(z0; x1) x2 x3 � � � xn � � �... ...(ze;) a2 a3 � � � an an+1 � � � ankThe �rst row represents the start con�guration. In the last row the haltingstate ze has been reached, and we will assume that this only happens whenthe read-write head is at the left most position and reading a blank tape cell.The symbol in position (i + 1; j + 1) depends only on the three symbolsin positions (i; j), (i; j + 1), and (i; j + 2), and the nondeterministic choicesof the machine. (i; j) (i; j + 1) (i; j + 2)(i+ 1; j + 1)

Spectral Problems 67If we assume that at each step there are always two nondeterministic choicesavailable, then we can describe this with two �nite 4-ary relations, �0, �1,which \list" all possible allowable tuples: �a b cd � 2 �0 (or 2 �1), �0 \list-ing" one choice; �1, the other.Now we set about describing a formula G so that x 2 L if and onlyif for a certain structure Ax, Ax j= G. The simplest structure that can beused to represent a binary string (for the moment) is Ax = (f1; : : : ; ng; E),where E(i) is true if and only if xi = 1. But if we use this encoding, wehave the following problem: All structures that are isomorphic to Ax will beindistinguishable to the formula G (which we have yet to give). So we mustadd to the structure an order relation < on the universe, which representsour intended ordering of the universe (which we have already indicated bysaying that our universe is f1; 2; : : : ; ng). The unique structure Ax describingx is now Ax = (f1; : : : ; ng; <;E) :The fact that G can make use of an ordering of the universe will be seen tobe very useful. A �rst component of G, based on <, will be used to describea successor relation S on k-tuples. In this way we will in a certain sense beable to count to nk (and not just up to n). The 2k-ary predicate S will beexistentially quanti�ed in G: G = 9S : : :. Later in G we will \axiomatize" thedesired properties of the predicate S. We will de�ne the portion of G usedto specify the properties of S recursively, de�ning S1, S2, : : : Sk = S, whereeach Si is a 2i-ary predicate de�ning an ordering on i-tuples:S1(x; y) = (x < y) ^ 8z ((x < z) ^ (y 6= z)! (y < z))Si+1(x1; : : : ; xi; y1; : : : ; yi) ;= �S1(x1; y1) ^Vij=2(xj = yj)�_ �Max(x1) ^Min(y1) ^ Si�1(x2; : : : ; xi; y2; : : : ; yi)� :The two additional predicates used above, Min and Max, identify the largestand smallest elements of the universe. Min can be de�ned via9Min8x�Min(x)$ 8y �(x = y) _ (x < y)�� :Max can be de�ned similarly.For every symbol a in � we introduce a new 2k-ary predicate symbolPa which we use to represent the computation of machine M on input xas described above. In particular, Pa(x;y) will be true if and only if thesymbol a is in position (x;y) in the matrix given above. We are using x asan abbreviation for (x1; : : : ; xk).So the �nal formula G will have the formG = 9S 9Min 9Max 9Pa1 : : : 9Pam 9C F ;

68 Topic 7where � = fa1; : : : ; amg. The k-ary predicate C expresses (through its truthvalue) for each time step which of the two nondeterministic choices was made.The Formula F consists of the axiomatization of S, Min, and Max givenabove, and the following conditions on the predicates Pa.Let's get right to the heart of the formula G: the transition relation forthe machine M . This can be expressed as8x;x0;x00;y;y0 Va; b; c; d 2 �(a; b; c; d) 2 �1 �Pa(x;y) ^ Pb(x;y0) ^ Pc(x;y00)^ S(x;x0) ^ S(y;y0) ^ S(y0;y00)^ C(y) ! Pd(x0;y0)� :We will also need the same formula with �0 in place of �1 and :C(y) inplace of C(y). (Note: this is the only formula in the construction that is nota Horn formula.)In a similar way we can express the transition relation for the column atthe far right and left edges of the matrix.Exercise 7.6.� Give a formula that correctly describes the �rst row of thematrix, i.e., the start con�guration of the machine. CExercise 7.7. Give a formula that expresses that at no time and at nolocation can more than one of the predicates Pa be true. CExercise 7.8. Give a formula for the last row of the matrix, that is, one thatchecks for an appropriate end con�guration. CThe desired existentially quanti�ed, second-order formula G now consistsof the conjunction of all of the formulas generated in the construction. Themodels of this formula characterize precisely the strings x that the Turingmachine M accepts. So we haveTheorem 7.1. (Fagin's Theorem) NP = SO9. utThis result can be immediately generalized to the polynomial hierarchy,PH (cf. Topic 16). Let SO denote the set of all models of arbitrary second-order formulas (universal quanti�cation is allowed now), thenCorollary 7.2. (Stockmeyer) PH = SO. utLet's return now to the spectral problem. Here we do not have an inputencoding like Ax and, therefore, also no order relationship on the universe.Only the question of the sizes of the models is relevant. In this context therecan be any arbitrary ordering of the universe { not just the one that corre-sponds to the intended order of the input string { that causes the constructionto work. The input is coded in unary as 1n. For this reason we can extend

Spectral Problems 69the construction above to existentially \guess" an ordering and �x it withadditional axioms: G = 9 < (Axioms for <) ^ : : : .Exercise 7.9. Give a formula that characterizes < as a total ordering. Thatis, every model for the formula must interpret < as a strict total ordering ofthe universe. CFrom this we getTheorem 7.3. (Bennett, R�odding, Schwichtenberg; Jones, Selman; Fagin)The set of spectra of �rst-order formulas (coded in unary) is exactly the classof NP-languages over a one-element alphabet (NP1).Corollary 7.4. The set of spectra of �rst-order formulas in closed undercomplement if and only if NP1 is closed under complement if and only ifNEXP is closed under complement.Exercise 7.10. Justify the last part of the corollary: NP1 is closed undercomplement if and only if NEXP is closed under complement. CIn the construction above there was only one place where we made use ofa formula that was not a Horn formula in the sense described on page 65 (seealso the footnote there). If the Turing machine is deterministic, then we nolonger need the predicate C, which simulated the nondeterministic choicesof the nondeterministic machine, or the distinction between �0 and �1. Theresult is a Horn formula. This gives the following result:Theorem 7.5. (Gr�adel) P = SO9 \Horn: utWe note only that once again it is important for this last result that anorder relation on the universe be available, either in the form of the inputencoding or, as it is often done, by enriching the logical language to includea built-in < symbol with a �xed interpretation. The axioms for the orderingcannot be expressed as a purely Horn formula. (The problem is the totalitycondition.)ReferencesMore detailed discussion of predicate logic can be found in many introductorybooks on logic, including� H. Enderton: A Mathematical Introduction to Logic, Academic Press,1972.� H.J. Keisler, J. Robbin:Mathematical Logic and Computability, McGraw-Hill, 1996.For a proof that SAT \Horn 2 P, see

70 Topic 7� C.H. Papadimitriou: Computational Complexity, Addison-Wesley, 1994,page 78.The results presented here can be found in� E. B�orger: Decision problems in predicate logic, in G. Lolli, FlorenceLogic Colloquium 82, North-Holland.� C.A. Christen: Spektralproblem und Komplexit�atstheorie, in E. Specker,V. Strassen: Komplexit�at von Entscheidungsproblemen, Lecture Notes inComputer Science 43, Springer, 1974, 102{126.� R. Fagin: Generalized �rst-order spectra and polynomial-time recogniz-able sets, in R. Karp, ed., Complexity of Computation, SIAM-AMS Pro-ceedings, Volume 7, 1974, 43{73.� R. Fagin: Finite-model theory { a personal perspective, Theoretical Com-puter Science 116 (1993), 3{31.� E. Gr�adel: The expressive power of second-order Horn logic, Proceed-ings of the 8th Symposium on Theoretical Aspects of Computer Science,Lecture Notes of Computer Science 480, Springer, 1991, 466{477.� E. Gr�adel: Capturing complexity classes by fragments of second orderlogic, Proceedings of the 6th Structure in Complexity Theory Conference,IEEE, 1991, 341{352.� Y. Gurevich: Toward logic tailored for computational complexity, in M.M.Richter et al, Computation and Proof Theory, Lecture Notes in Mathe-matics 1104, Springer, 1984, 175{216.� N. Immerman: Expressibility as a complexity measure: results and direc-tions, Proceedings of the 2nd Structure in Complexity Theory Conference,IEEE, 1987, 194{202.� N. Immerman: Descriptive and computational complexity, in J. Hartma-nis, ed., Computational Complexity Theory, AMS Applied MathematicsProceedings, Vol. 38, 1989, 75{91.� N.D. Jones, A.L. Selman: Turing machines and the spectra of �rst-orderformulas, The Journal of Symbolic Logic 39, No. 1 (1974), 139{150.� C.H. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.� L.J. Stockmeyer: The polynomial-time hierarchy, Theoretical ComputerScience 3 (1977), 1{22.

8. Kolmogorov Complexity,the Universal Distribution,and Worst-Case vs. Average-Case
An algorithm can exhibit very di�erent complexity behavior in the worstcase and in the average case (with a \uniform" distribution of inputs). Onewell-known example of this disparity is the QuickSort algorithm. But it ispossible { by means of Kolmogorov Complexity { to de�ne a probabilitydistribution under which worst-case and average-case running time (for allalgorithms simultaneously) are the same (up to constant factors).What is the di�erence between the following two bit sequences?010101010101010101010101010101110101000011100100100101111111The �rst sequence exhibits a certain pattern which is easy to notice andwhich makes the sequence easy to describe: it consists of 15 repetitions of`01'. The second sequence does not have such an obvious pattern. In fact, thesecond sequence was generated by ipping a coin. If a pattern were detectablein the second sequence, this would be merely coincidence. In this sense, thesecond sequence is \more random" than the �rst. On the other hand, inthe sense of probability theory, each sequence is an equally likely result ofipping a coin 30 times, namely, each occurs with probability 2�30. Thus,probability theory does not provide the correct framework within which totalk meaningfully about a random sequence.But consider now algorithms that generate each sequence: In the �rstcase:FOR i := 1 TO 15 DO OUTPUT `01' ENDand in the second case:OUTPUT `110101000011100100100101111111'If we abstract away the speci�c length of our examples, namely 30, andimagine instead an arbitrary value n, then the length of the �rst program(as text) is O(1) + log(n), since we need log(n) bits to represent the numbern=2. The second program, on the other hand, has length O(1)+n. That is, inorder to describe this \random" sequence, we are essentially forced to writedown the entire sequence, which takes n bits. On the basis of this intuition

72 Topic 8we will de�ne a sequence to be random if any description of the sequencerequires essentially n bits.We will also consider the following variation: Consider algorithms thattake an input y and produce an output x. The minimal length of such aprogram that generates x from y is a measure of the relative randomness ofx with respect to y; or said another way, it describes how much informationabout x is contained in y. If in the examples above we let n, the length of thesequence to be generated, be the input to the program rather than a constantwithin the program, for example,INPUT n; FOR i := 1 TO n=2 DO OUTPUT `01' ENDthen the �rst program has length only O(1), while the second program is stillof length O(1) + n.Now �x a universal programming language (say MODULA or Turing ma-chine). ThenK(x j y) denotes the length of the shortest program (in this �xedprogramming language) that on input y outputs x in �nite time. K(x j y) isthe conditional Kolmogorov complexity of x with respect to y. The (absolute)Kolmogorov complexity of x is K(x) = K(x j �).Returning to our �rst example above, we obtain K(01|{z}n=2-times) � logn+ cand K(01|{z}n=2-times j n) � c, where c is a constant independent of n. (Theconstant c depends on the choice of programming language.)In many cases, the information y from which x is to be generated willbe precisely the length of x, as in our example. This has the following in-tuitive explanation: a string x contains two kinds of information { its innerirregularity or randomness, and its length. If we reveal the information aboutthe length of x \for free," then we can concentrate solely on the randomnessof x. If n = jxj, then K(x j n) is called the length-conditioned Kolmogorovcomplexity of x.Exercise 8.1. Show that there are constants c and c0 such that for all stringsx and y, 0 � K(x j y) � K(x) + c and K(x) � jxj+ c0. CExercise 8.2. Show that there is a constant c such that for all x,K(x j x) � c.CExercise 8.3. Let �n be the sequence consisting of the �rst n binary digitsin the representation of the irrational number �. How large is K(�n j n)? CSince the choice of programming language seems to be arbitrary, one mustconsider how this choice a�ects the de�nition. In any universal programminglanguage one can write an interpreter u (a universal Turing machine) whichon input p0y behaves just like program p0 (in programming language P 0) oninput y. LetKP (KP 0) denote the Kolmogorov complexity with respect to the

Kolmogorov Complexity 73programming language P (P 0). If we assume that p0 is the shortest programthat generates x from y, then KP 0(x j y) = jp0j. Since u(p0y) = x, we getKP (x j p0y) � juj, and since KP (p0) � jp0j+ c (see Exercise 8.1), we getKP (x j y) � jp0j+ c+ juj = KP 0(x j y) + c+ juj = KP 0(x j y) +O(1) :So values of K with respect to two di�erent programming languages di�erby at most an additive constant. As long as we are willing to ignore constantadditive factors, we can consider the de�nition of Kolmogorov complexity tobe robust and speak of the Kolmogorov complexity of a string x.There can't be too many strings of low Kolmogorov complexity. Thereare at most 2k programs of length k, so there can be at most 2k strings withK(x) = k. (The same is true of K(x j y) = k for any y.) Altogether we seethat the 2n strings of length n are partitioned as follows:at most 1 string has K-complexity = 0,at most 2 strings have K-complexity = 1,at most 4 strings have K-complexity = 2,...at most 2n�1 strings have K-complexity = n� 1.In general, the number of strings with K-complexity � k is at most 1 + 2 +� � �+ 2k = 2k+1 � 1. Considered the other way around this means thatat least 1 string has K-complexity � n,more than half of the 2n strings have K-complexity � n� 1,more than 3/4 of the 2n strings have K-complexity � n� 2,more than 7/8 of the 2n strings have K-complexity � n� 3,...Exercise 8.4.� Give a lower bound for the expected value of theK-complexityof a string chosen uniformly at random from among all strings of length n.CExercise 8.5.� Show that the function x 7! K(x) is not computable. CNow we want to de�ne the universal probability distribution, at least onstrings of length n. That is, for each length n we de�ne a probability distri-bution � so that �(x) is the probability of selecting the string x from amongthe strings of length n = jxj. In order for this to be a probability distribution,of course, it must be the case that Pfx:jxj=ng �(x) = 1. We want to de�ne �in such a way that �(x) is proportional to 2�2K(xjn), i.e., for some constantc, �(x) = c � 2�2K(xjn). This is possible as long as Pfx:jxj=ng 2�2K(xjn) = dfor some constant d, since then we can set c = 1=d. So it su�ces to showthat Pfx:jxj=ng 2�2K(xjn) is bounded above by some constant. (The 2 in theexponent is there to give us convergence.)

74 Topic 8Exercise 8.6.� Show this. CMany algorithms exhibit di�erent behavior in the worst case than in theaverage case, at least when average-case is interpreted under the uniform dis-tribution of strings of a given length. A naive implementation of the Quick-Sort algorithm is an example: in the worst case it requires
(n2) time, buton average it requires only O(n logn). Now we want to study the average-case complexity of QuickSort (or any other algorithm) under the probabilitydistribution �.An interesting detail in the case of QuickSort is that the worst-case occurswhen the input list is sorted in ascending or descending order. Let the num-bers to be sorted be f1; 2; : : : ; ng. K((1; 2; : : : ; n) j n) = O(1), so under thedistribution �, the probability of a sorted list is especially large, in fact, it is aconstant independent of n: �((1; 2; : : : ; n)) = c2�2K((1;2;:::;n)jn) = c2�O(1) =:�. From this it follows that the expected running time for QuickSort underthe probability distribution � is:Xfx:jxj=ng�(x)TQuickSort(x)��((1; 2; : : : ; n))TQuickSort((1; 2; : : : ; n))=� �
(n2) =
(n2) :where TA(x) denotes the running time of algorithm A on input x and x isa permutation of f1; 2; : : : ; ng. So under the probability distribution �, theaverage running time of QuickSort is as bad as the worst case, namely
(n2).We shall see that the probability distribution � exhibits this same malevolentbehavior towards all algorithms, namely that the average-case running timeis within a constant factor of the worst-case.In the counting arguments given above to bound the number of strings xwith K(x) � n� k or K(x j y) � n� k we focused our attention on stringsof only one length n. Now we want to generalize this into the following veryuseful and generally applicable theorem.Exercise 8.7.� Let M be an arbitrary set of strings and let m = jM j. Showthat for every number k and every string y, there are at least m(1� 2�k)+1strings x in M for which K(x j y) � logm� k. CNext we want to discuss the properties of a Kolmogorov random string x,i.e., a string for which K(x j jxj) � jxj. We expect a random string (in theusual sense of probability theory) to have roughly the same number of zeroesand ones. This is also the case for a Kolmogorov random string:Exercise 8.8.� Explain why a Kolmogorov random string (if it is su�cientlylong) cannot consist of 34n ones and 14n zeroes.Hint: How would this situation provide a means of describing the string(algorithmically) with fewer than n bits? C

Kolmogorov Complexity 75Now let's take another look at the universal probability distribution andour QuickSort example. QuickSort was intended to be understood as a repre-sentative for an arbitrary algorithm, in particular, for one where the average-case and worst-case running times di�er (under the uniform distribution).The only important property of the sequence (1; 2; : : : ; n) for that argumentwas that it is an input { in fact, the lexicographically least input { on whichthe algorithm exhibits its worst-case behavior (
(n2) in the case of Quick-Sort).Now let A be an arbitrary algorithm that halts on all inputs. Considerthe following program, which on input n, describes (i.e., outputs) a certainstring of length n.INPUT n;w := 0;FOR (all y with jyj = n, in lexicographical order) DOv := (Running time of A on input y)IF v > w THEN w := v; x := y END;END;OUTPUT x;This algorithm has a �xed length (independent of the input n but dependenton the algorithm A); let's call it c. For every n, let xn be the output of A oninput n. Then K(xn j n) � c and so �(xn) is proportional to 2�2K(xnjn) �2�2c. This means that for some constant �, independent of n, �(xn) � �.Furthermore, by the construction of the algorithm for generating xn, therunning time of A on input xn is maximal among inputs of length n. Thatis, A exhibits its worst-case complexity on input xn.Exercise 8.9. Now �nish the proof that under the universal probabilitydistribution � on inputs of length n, every algorithm that halts on all inputshas an average-case complexity that is (up to constant factors) identical toits worst-case complexity. CReferencesThe idea of Kolmogorov complexity �rst appeared in the 1960's in papers byKolmogorov, Solomono� and Chaitin. A comprehensive overview is given in� M. Li and P. Vit�anyi: An Introduction to Kolmogorov Complexity and ItsApplications, 2nd edition, Springer, 1997.The use of the universal probability distribution { originally de�ned by Levinand Solomono� { to analyze the complexity of algorithms comes from� M. Li and P. Vit�anyi: Average-case complexity under the universal distri-bution equals worst-case complexity, Information Processing Letters 42(1992), 145{149.

76 Topic 8� M. Li and P.M.B. Vit�anyi: A theory of learning simple concepts andaverage case complexity for the universal distribution. Proceedings of the30th Symposium on Foundations of Computer Science, IEEE, 1989.Further results can be found in� P.B. Milterson: The complexity of malign ensembles. SIAM Journal onComputing 22 (1993), 147{156.

9. Lower Bounds via Kolmogorov Complexity
The concept of Kolmogorov complexity can be used to prove complexitylower bounds. In many cases the proofs obtained in this way are much more\elegant," or at least shorter, than the original proofs. In a few cases, thelower bounds were �rst achieved by means of Kolmogorov complexity.The method of using Kolmogorov complexity to establish lower bounds worksas follows: Suppose we want to prove a lower bound on the running time ofa Turing machine to perform a certain task { or a lower bound on the sizeof some other mathematical or computational object. Let x be a su�cientlylong Kolmogorov random string, i.e., K(x) � jxj. Now we assume that thelower bound we are seeking is violated, e.g., there is a Turing machine thatperforms the given task more quickly than the stated bound. Then perhapsthere is a way to use this Turing machine { and possibly some additionalinformation { to describe the Kolmogorov random string x with fewer thann = jxj bits. This would, of course, be a contradiction and establish the lowerbound.Our �rst example of this approach comes from number theory rather thancomputer science, but the result has implications for computer science as well.We will use Kolmogorov complexity to prove that there are in�nitely manyprime numbers. In fact, the argument we will give can even be extended toprove a weak form of the Prime Number Theorem.So suppose that there are only �nitely many prime numbers, say p1,p2; : : : ;pk. Let n be a su�ciently large number so that the Kolmogorov complex-ity of the binary representation of n is not compressible, i.e., K(bin(n)) �jbin(n)j = logn.1 Every natural number has a unique prime factorization,i.e., n = pn11 pn22 : : : pnkk . So the numbers n1; n2; : : : ; nk (coded as bit strings)constitute a unique description of n, and thus n { or rather bin(n) { can bereconstructed from the sequence n1; n2; : : : ; nk.1 For simplicity in this example we will do computations assuming that jbin(n)j =log n. The exact value is actually jbin(n)j = � 1; n = 0blog2 nc+ 1; n > 0 . But sinceadditive constants do not play a role in this context, this simpli�cation does notchange the validity of the argument.

78 Topic 9Exercise 9.1. Use the observations just made to determine an upper boundonK(bin(n)) that contradicts the choice of n made above and thus completesthe proof that there are in�nitely many primes. CThis argument can be pushed farther. The Prime Number Theorem is afamous and hard theorem in number theory which says that �(n), the numberof prime numbers � n, is asymptotic to n= lnn, that is�(n) � nlnn :With signi�cantly simpler arguments { using Kolmogorov complexity { wewill show that for in�nitely many n a lower bound of�(n) � nlog2 nholds. This lower bound is su�cient for many applications.Let pm be themth prime number. It is su�cient to show that for in�nitelymany m, pm � m log2m.Exercise 9.2. Show that this is indeed su�cient. CNow let n be a su�ciently large natural number such that K(bin(n)) �logn. Let pm be the largest prime number that divides n. The number n canbe (algorithmically) reconstructed from m and n=pm. So a bit string thatcodes these two numbers is a su�cient description of n.Exercise 9.3. Give an algorithm that reconstructs n from the numbers mand k = n=pm. CThus log(n) � K(bin(n)) � jencoding of m and n=pmj :The problem is that we cannot simply write down the binary representationsof m and n=pm one after the other, since then we would not know whereone number ended and the other began. We must sacri�ce some additional(and in this case very costly) bits to make our encoding such that it can becorrectly decoded.For a string w = a1a2 : : : an�1an 2 f0; 1g� let w = a10a20 : : : an�10an1.By means of this encoding of w, the end of the code for w can be recognizedby the �nal `1'. Such a code is called self-terminating. More formally, anencoding scheme is self-terminating if it can \recognize its own end" in thefollowing sense: From any string of the form code(w)v, where v is arbitrary,it is possible to recover code(w) algorithmically.We could code the pair of numbers as bin(m)bin(n=pm). But sincejwj = 2jwj, this would cost 2 logm+log(n=pm) bits. Plugging this into the ap-proximation above would yield: logn � K(bin(n)) � 2 logm+logn� log pm,so pm � m2, i.e., �(n) � pn. So this method of coding wastes too manybits.

Lower Bounds via Kolmogorov Complexity 79If, however, we let code(w) = bin(jwj)w ;then we get another coding of w that is also self-terminating.Exercise 9.4. Justify the claim just made. Furthermore, compute the lengthof code(w) as a function of w. Use this to show that pm � m log2m. CExercise 9.5. The improvement from w to code(w) can be iterated. Whatself-terminating code does one get in this way? What improved lower boundfor �(n) does this yield? CIt is interesting to note that any improvement in the length (or, rather,shortness) of self-terminating codes can be translated directly into a sharperbound in our `Weak Prime Number Theorem.'Exercise 9.6. Show that if n is a su�ciently large number and its binaryrepresentation has high Kolmogorov complexity, (i.e., K(bin(n)) � logn),then n cannot be a prime number.Hint: Use �(n) � n= lnn. C� � � � �This Kolmogorov method can also be used in the context of circuit com-plexity. Consider a boolean function f from f0; 1gn to f0; 1g. The circuitcomplexity of such a function is the smallest number of boolean gates thatsu�ce to build a circuit that has n (binary) input gates and computes thefunction f . Since a truth table for such a function has 2n rows, by givinga binary string of length 2n (the evaluation vector) such a function can beuniquely characterized.Now we select an especially \di�cult" boolean function, f , for which theKolmogorov complexity of this string is high, i.e.,K � 2n. What is the circuitcomplexity of the associated boolean function f? Since a boolean circuitcompletely characterizes a function (and, in turn, its encoding as a binarystring), we have the following inequality for the Kolmogorov complexity ofthe binary string for f :K � jthe shortest description of the circuitj+O(1) :How many bits do we need to represent a circuit consisting of g gates? Thecircuit can be described by listing all its gates. Each gate is described bygiving its type (i.e., which boolean operation it computes) and the numbersof the gates (or inputs) that feed into the gate. This requires c+2 log(g+ n)bits for each gate.

80 Topic 9Exercise 9.7. Let size(f) be the circuit complexity of f , that is, the smallestnumber of gates that can be used to compute f . Show that size(f) =
(2n=n).CExercise 9.8.� A formula is a circuit in which every gate has fan-out 1. Showthat the smallest formula for f has size
(2n= logn).Hint: A formula can be encoded especially compactly, without the use of anyparentheses, in \reverse Polish notation." C� � � � �Finally, we want to use the Kolmogorov method to prove that any one-tape Turing machine that accepts the languageL = fw0jwjw j w 2 f0; 1g�grequires at least quadratic (
(n2)) time. From this it follows (or at least isprovable with only slight modi�cations) that the languagesfww j w 2 f0; 1g�gand fwwR j w 2 f0; 1g�galso require quadratic time. In the latter, aR is the reversal of a:(a1 : : : an)R = an : : : a1 :We use the concept of a crossing sequence. Let M be a Turing machineand let i be some �xed boundary between two adjacent cells on the tape. Ona given input x, the crossing sequence for x and i is the sequence of statesin which the Turing machine �nds itself as its read-write head crosses pointi on the tape. We denote this crossing sequence by CSM (x; i). CSM (x; i) isan element of Z�, where Z is the set of states for the Turing machine.

Lower Bounds via Kolmogorov Complexity 81Example.� � � � � �?iz3
z1z5z4

time?
CS = z3z1z5z4Exercise 9.9. Why is 1Xi=�1 jCSM (x; i)j = timeM (x) ?(timeM (x) is the running time of M on input x.) CBy Exercise 9.9, in order to show that timeM (x) =
(n2), it is su�cientto show that a number of crossing sequences CSM (x; i) for x (speci�cally
(n) of them) each have length at least
(n). We will restrict our attentionto the crossing sequences that occur in the middle n=3 positions of the input,where n is the total length of the input. This is the portion that on inputw0jwjw consists entirely of 0's.Without loss of generality, we can assume that all of our Turing machinesonly enter the halting state when their read-write head is on cell 0 of thetape.Exercise 9.10.� Prove the following lemma:Let jxj = i. If CSM (xy; i) = CSM (xz; i), then xy 2 L(M) if and only ifxz 2 L(M). CExercise 9.11. At what point in the proof of the previous exercise do wemake use of the \WLOG" assumption above? C

82 Topic 9Exercise 9.12.� Prove the following lemma:If i = jxj = jx0j and c = CSM (xy; i) = CSM (x0y0; i), then c =CSM (xy0; i) = CSM (x0y; i). CNow let M be a Turing machine that accepts L. Let w0jwjw be an inputfor M and let jwj � i � 2jwj. By the previous lemma we know that fordistinct w and w0 with jwj = jw0j, the crossing sequences CSM (w0jwjw ; i)and CSM (w00jw0jw0 ; i) must also be distinct.Exercise 9.13. Why? CExercise 9.14. Describe an algorithm that on inputs M , m 2 N , i 2 N ,m � i � 2m and crossing sequence c (all coded in binary), outputs the stringw of length m for which CSM (w0jwjw ; i) = c. (By the previous observation,w, if it exists, must be unique.) CWe conclude, therefore, that the Kolmogorov complexity of w must satisfyK(w) � O(log jwj) + jcj. If w is chosen to be Kolmogorov random { here'swhere the Kolmogorov argument comes in { then K(w) � jwj, so jcj �jwj �O(log n).Exercise 9.15. Complete the proof that for every one-tape Turing machineM that accepts L, timeM (x) =
(jxj2). CAs an aside, we mention that the argument above actually works notonly for a string w that is Kolmogorov random but also for any \typical"string w. The expected value (under the usual uniform distribution) for theKolmogorov complexity is E(K(w)) � jwj � 2 (cf. Topic 8). So even in the\average" case, timeM (x) =
(jxj2).ReferencesFor more on the Prime Number Theorem see a book on number theory, forexample,� I. Niven, H.S. Zuckerman: An Introduction to the Theory of Numbers,Wiley, 1960.The following references contain examples of using Kolmogorov complexityto obtain lower bounds:� W.J. Paul: Kolmogorov complexity and lower bounds, Foundations ofComputation Theory, Akademie-Verlag, Berlin, 1979.� W.J. Paul, J.I. Seiferas, J. Simon: An information-theoretic approach totime bounds for on-line computation, Journal of Computer and SystemSciences 23 (1981), 108{126.

Lower Bounds via Kolmogorov Complexity 83� M. Li, P. Vit�anyi: Applications of Kolmogorov complexity in the theoryof computation, in A.L. Selman, ed., Complexity Theory Retrospective,Springer, 1990, 147{203.� M. Li, P. Vit�anyi: An Introduction to Kolmogorov Complexity and itsApplications, 2nd edition, Springer, 1997.

84 Topic 9

10. PAC-Learning and Occam's Razor
Many (algorithmic) learning theories have been developed. The one whichis now most often considered originated with L. Valiant (1984) and is calledPAC-learning. In this chapter we show an interesting connection betweenPAC-learning and the principal known as \Occam's Razor."The philosopher and logician Wilhelm von Occam (1285{1349) is creditedwith the following principle, which is usually referred to as Occam's Razor:If there are several hypotheses that each explain an observed phe-nomenon, then it is most reasonable to assume the simplest of them(i.e., the one most succinctly formulated).With this \razor," Occam cut out all superuous, redundant explanations.(This was directed in particular at the scholastics.)If looked at dynamically, the process of formulating a hypothesis thatexplains previously made observations is very much like learning; upon pre-sentation with additional observations, it may be necessary to revise thepreviously held hypothesis and replace it with a new one (which explains thenew observations as well as the old), and so on. More precisely, we are inter-ested in learning a concept by means of observations or examples which areprovided by a teacher \at random" along with a statement about whether ornot the examples belong to the class that is to be learned.The process can be understood as the principle of �nding a hypothesisin the natural sciences: \Nature" is directed \internally" by a function fwhich is unknown to humans. Furthermore, examples x1; x2; : : : are gener-ated according to some (equally unknown) probability distribution P. As anoutsider, one can only observe the pairs (x1; f(x1)); (x2; f(x2)); : : :. After awhile, one forms a hypothesis h, which explains the observations made upuntil time m, i.e., h(x1) = f(x1), : : :, h(xm) = f(xm).

86 Topic 10Sketch:
xi - ��f - f(xi)�� - xi �
 �	�� ���� BB��

#" !- -hpppppppppppppppppppppppppppppppppppp
ppprandomly chosenaccording to Ppppppppppp6

�� �ppp pppppppppppppppppppppppppppppppp
pppppppp ppp
The principle of Occam's Razor suggests that one should choose h to bethe simplest possible hypothesis. \Simple" could be understood in the senseof Kolmogorov complexity, i.e., choose h so that K(h) is minimal. A \good"hypothesis h is one that proves to be valuable for future observations as well:Pr[h(x) = f(x)] should be close to 1, where x is chosen randomly accordingto P. The quintessence of the following investigations will be that it is worthlooking for a simple hypothesis (in the sense of Occam's Razor) since withhigh probability such a hypothesis will also be a good hypothesis.Now we want to formalize these ideas and capture them with a de�nition.The xi's will simply be 0-1-strings of a suitable length n. The concept to belearned, f , and the hypotheses h will then be n-place boolean functions.De�nition 10.1 (Valiant). Let n > 0. A hypothesis space Hn is a subsetof the set of all n-place boolean functions. A concept to be learned is anyfunction f 2 Hn. Let P be a probability distribution on f0; 1gn. A set ofexamples is a �nite set of pairs ((x1; f(x1)); : : : ; ((xm; f(xm)), where the xi'sare independently chosen according to the distribution P. A hypothesis h 2Hn is consistent with a set of examples if h(x1) = f(x1); : : : ; h(xm) = f(xm).The function h 2 Hn di�ers from the concept f by at most " if Pr[h4f] � ",where h4 f = fx j h(x) 6= f(x)g and x is chosen randomly according to P.An algorithm A that on input of a �nite set of examples produces a consistenthypothesis is called a learning algorithm.A family of hypothesis spaces (Hn)n>0 is called PAC-learnable if there isa learning algorithm A and a polynomial m { in the arguments n, 1=", and1=� { such that for every n > 0, every concept f 2 Hn, every probabilitydistribution P on f0; 1gn, every " > 0 and every � > 0, A on input of anexample set with m(n; 1="; 1=�) elements (chosen at random according to P)produces a hypothesis h 2 Hn that with probability 1� � di�ers from h by atmost ".The abbreviation PAC stands for \probabilistically approximately cor-rect."

PAC-Learning and Occam's Razor 87Sketch:
r�����
�	

'

&

$

%
pppp p p p p p p p p p set of alln-placebooleanfunctionsppppppppppppphypothesis space Hn

p concept tobe learned fppppppppppppppp set of allhypothesesh withPr[h4 f] � "pppset of allhypothesesconsistent witha givenexample setExercise 10.1. Let A be a learning algorithm that on input of a (su�cientlylarge) example set with probability � 1 � � produces a hypothesis h thatdi�ers from f , the concept being learned, by at most ".If a set of examples and a value x 2 f0; 1gn are chosen at random (inde-pendently and according to P), what is the probability that the hypothesish produced by A on this example set agrees with the concept being learned,i.e., with what probability is h(x) = f(x)? CIn the diagram, a small oval represents the set of all hypotheses that areconsistent with a �xed example set. Such an example set, consisting of mexamples, is chosen at random according to P. The concept f is, of course,always among the consistent hypotheses. We will see that the largerm is, themore likely it is that all consistent hypotheses lie in the "-neighborhood of f ,so that in the diagram, the oval is entirely contained in the circle. In this case,any learning algorithm has a high probability of producing a hypothesis thatdi�ers from f by no more than ", since by de�nition, a learning algorithmalways produces a consistent hypothesis.Let's approximate the probability p that after a random choice of anexample set of size m there is a consistent hypothesis that is not in the"-neighborhood of f :p � Xh 2 Hn;P r[h4 f] > "Pr[h is consistent]� Xh 2 Hn;P r[h4 f] > "(1� ")m

88 Topic 10� jHnj � (1� ")m :Exercise 10.2. Under the assumption that P is the uniform distribution onf0; 1gn, give an upper bound for the number of h 2 Hn with Pr[h4 f] � ".CIf � � jHnj�(1�")m, then we are guaranteed that every learning algorithm(on example sets of size m) has probability at least 1 � � of producing ahypothesis that di�ers from f by at most ". We can re-express this as acondition on m: � � jHnj � (1� ")mmm � 1� log(1�") (log jHnj+ log(1=�)) :To satisfy this inequality, since ln(1 � x) � �x, it is su�cient to choosem so that m � ln 2" (log jHnj+ log(1=�)) :This term is polynomial in 1=", 1=� and log jHnj. The dominant term islog jHnj. If Hn is the set of all n-place boolean functions on f0; 1g, thenjHnj = 22n , so log jHnj = 2n. For the polynomial bounds that are requiredin the de�nition it is necessary to restrict the set of (relevant) hypotheses.In cases that occur in practice it is often the case that there are manyfewer than 22n potential possible hypotheses. Sometimes it is the case that thelearning algorithm is guaranteed to produce a hypothesis that is shorter thanthe typical hypothesis, which has length 2n, as if it were following Occam'srazor. In order to speak of the length of a hypothesis, we must �x someencoding scheme, for example boolean circuits. In \pure form" we can identifythe length of the hypothesis with its Kolmogorov complexity.De�nition 10.2. (Blumer, Ehrenfeucht, Haussler, Warmuth) A learningalgorithm is said to be an Occam algorithm, if for every n > 0 with respect tothe hypothesis space Hn, on input of an example set of (su�ciently large) sizem, the hypothesis produced by the algorithm always has length � p(n) �m1��,where p is a polynomial and � > 0.This means that we can restrict our hypothesis space to include onlyhypotheses of length � p(n) � m1��, and this set has size 2p(n)�m1�� . Theterm m1�� in this expression has an interesting interpretation: an Occamalgorithm must perform a certain form of information compression so thatthe number of examples, m, is sub-linear in the size of the hypothesis space.Exercise 10.3.� Show that from jH j � 2p(n)�m1�� , it follows that for PAC-learnability it is su�cient to choose m to be polynomial in n, 1=", 1=�. CSo we have shown

PAC-Learning and Occam's Razor 89Theorem 10.3. (Blumer, Ehrenfeucht, Haussler, Warmuth) If for a familyH = fHn : ng of hypothesis spaces there is an Occam-algorithm, then H isPAC-learnable. �We want to explain this concept using an example from the literature (cf.Valiant). Let DNFn;k denote the set of all formulas in disjunctive normalform in the variables x1; : : : ; xn, such that all of the monomials consist of atmost k literals. That is, a formula f in DNFn;k has the form:f(x1; : : : ; xn) = m_i=1 k̂j=1 zij with zij 2 fx1; : : : ; xn; x1; : : : ; xn; 1g ;where zij = 1 denotes that position j of clause i remains un�lled, so thatclause j contains fewer than k literals. In what follows we will identify for-mulas with the functions they de�ne.Exercise 10.4. Show that in DNFn;k there are at most 2(2n+1)k di�erentfunctions. CThe number of functions in the hypothesis space H = DNFn;k is dras-tically less than 22n ; the function log jH j is bounded by the polynomial(2n+1)k. By the preceding discussion, to demonstrate the PAC-learnabilityof DNFn;k it is su�cient to give any learning algorithm and to choose thesize of the example set to be m � 1" ((2n + 1)k + log(1=�)). The only thingthat remains, then, is to give an algorithm that for any example set producesa consistent hypothesis.Although the PAC-learnability of DNFn;k is often discussed in the liter-ature in connection with Occam's Razor, this example is really too simple.The hypothesis space is so small that the length of every hypothesis h sat-is�es K(h) � (2n + 1)k � p(n) � m1�� with p(n) = (2n + 1)k and � = 1.So every learning algorithm (i.e., any algorithm as long as it is merely ableto produce something consistent with the examples) is an Occam algorithm.The requirement that the hypothesis have length sub-linear in m does notplay a role at all.Here is a simple learning algorithm:INPUT example set f(x1; f(x1)); : : : ; (xm; f(xm))g;h := set of all monomials with � k literals;FOR i := 1 TO m DOIF f(xi) = 0 THENh := h� fm j m is a monomial in h with m(xi) = 1g;END;END;OUTPUT h;Exercise 10.5. Show that this algorithm always produces a hypothesis thatis consistent with the example set. C

90 Topic 10In this example, it is important that the function f is also in the hypothesisspace Hn, even though all of the de�nitions and theorems and the algorithmare applicable even when f 62 Hn. For example, let f be the parity function.The results in Topic 12 will imply that this function cannot be approximatedby a low-degree polynomial. So the naive algorithm just given must necessar-ily produce an inconsistent hypothesis when applied to the parity function.� � � � �It should be noted that in the literature, the complexity of the learningalgorithm (relative to the size of the input example set) is also an issue andis usually included in the de�nition. The learning algorithm should run inpolynomial time, just as it does in our example. Since the complexity ofthe learning algorithm is irrelevant for Theorem 10.3, we left this out of ourde�nition.In a further departure from the literature, we have implicitly assumedthat the hypotheses are boolean functions. This seemed to us to be consistentwith the usual practice in complexity theory where every �nite mathematicalobject is coded as a 0-1-string.References� L.G. Valiant: A theory of the learnable, Communications of the ACM 27(1984), 1134{1142.� A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth: Occam's Razor,Information Processing Letters 24 (1987), 377{380.� A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth: Learnabilityand the Vapnik-Chervonenkis dimension, Journal of the ACM 36 (1989),929{965.� R. Board, L. Pitt: On the necessity of Occam algorithms, Proceedings ofthe 22nd Symposium on Theory of Computing, ACM, 1990, 54{63.� D. Angluin: Computational learning theory: survey and selected bibli-ography, Proceedings of the 24th Symposium on Theory of Computing,ACM, 1992, 351{369.� B. Natarajan: Machine Learning, Morgan Kaufmann, 1991.� M. Anthony, N. Biggs: Computational Learning Theory, Cambridge Uni-versity Press, 1992.� M. Li, P. Vit�anyi: An Introduction to Kolmogorov Complexity and itsApplications, 2nd edition, Springer, 1997.

11. Lower Bounds for the Parity Function
In their pioneering work of 1984, Furst, Saxe and Sipser introduced themethod of \random restrictions" to achieve lower bounds for circuits: Theparity function cannot be computed by an AND-OR circuit of polynomialsize and constant depth.By the parity function, PARITY, we mean the in�nite sequence of functionsparn : f0; 1gn ! f0; 1g, n = 1; 2; 3; : : : withparn(x1; : : : ; xn) = nXi=1 xi! mod 2 :The question of existence or non-existence of combinatorial circuits for theparity function has been investigated for a long time. This is because manyother functions can be expressed in terms of the parity function.We are interested here in circuits of a speci�c kind, namely circuits thatconsist of AND- and OR- gates with unbounded fan-in and have inputs labeledwith variables xi or their negations xi.Example.

x1 x2 x1 x2
�� �OR���� aaaaaaaaa
�� �AND�� �ANDTTT����� ###### ����� AAAAAGates of the same type that follow one directly after the other can becombined into a single gate without changing the function computed by thecircuit. For example, the circuit above is equivalent to the following circuit:

92 Topic 11
x1 x2 x1 x2
�� �OR���� aaaaaaaaa
�� �AND����� AAAAAAAAA
���������So circuits of this type can be put in a certain normalized (leveled) form byarti�cially �lling in with gates of fan-in 1:

x1 x2 x1 x2
�� �OR���� aaaaaaaaa
�� �AND����� �� �OR �� �OR �� �OR��� @@@@���� �������� ����HH

HHHHH
Now we have on the �rst level only OR-gates, on the second level only AND-gates, and, if necessary, we can continue alternating between levels of OR-and AND-gates.Exercise 11.1. Why can all boolean functions on n variables be computedby a circuit with only 2 levels (a depth 2 circuit)? What is the size (numberof gates) of such a circuit in general? CThe distributive laws for boolean algebra state thatx ^ (y _ z) = (x ^ y) _ (x ^ z) ;x _ (y ^ z) = (x _ y) ^ (x _ z) :Exercise 11.2. Use the distributive laws to transform the depth 2 AND-ORcircuit above into a depth 2 OR-AND circuit. CExercise 11.3. Suppose we have a depth 2 AND-OR circuit in which all theOR-gates in the �rst level have fan-in c and the AND-gate in the second level

Lower Bounds for Parity 93has fan-in d. After using the distributive laws to transform such a circuit intoa depth 2 OR-AND circuit, what is the fan-in of the OR gate? What is thefan-in of the AND-gates? CNote that the condition \fan-in = d" for the AND-gate in the previousexercise can be replaced by the condition that \the number of variables uponwhich the value of the AND-gate depends is at most d."Exercise 11.4. Suppose we have a circuit for the complement of parity (parn)that has depth t and size g. Show that there is a circuit with t levels and ggates that computes parn. CExercise 11.5. Suppose we have a circuit for parn. Now set some of the xi'sto 0, others to 1, and leave the remaining ones as variables. Any OR-gatethat now has an input with value 1 (or any AND-gate with an input withvalue 0) can be eliminated and replaced with 1 (or 0), etc. Show that theresulting reduced circuit again computes either parity or its complement (ona smaller number of variables). CNow we want to investigate whether PARITY can be computed with cir-cuits of constant depth and polynomial size. In other words, the questionis: Is there a constant t and a polynomial p such that for all n the booleanfunction parn can be computed with a depth t circuit that has at most p(n)gates? Note that t is not allowed to grow with increasing values of n but mustremain constant.For t = 2, at least, we can show that this is not possible:Exercise 11.6.� Prove that PARITY cannot be computed by polynomial-size,depth-2 OR-AND circuits.Hint: First show that every AND-gate on level 1 in such a circuit must haveexactly n inputs. From this conclude that the circuit must have at least 2n�1AND-gates. CExercise 11.7. Show that PARITY can be computed by polynomial-size cir-cuits of depth O(log n).Hint: As a �rst step, construct a polynomial-size, O(log n) depth circuit ofXOR-gates. CWe denote by ACk the class of all boolean functions that can be computedby polynomial-size, depth O((log n)k) circuits with AND- and OR-gates ofunbounded fan-in. Exercise 11.7 shows that PARITY 2 AC1. We want to showthat PARITY 62 AC0. (Note that O((log n)0) = O(1)). Exercise 11.6 is a �rststep in that direction, the base case of an induction.The proof of this is due to Furst, Saxe and Sipser, who made use of(at least in this context) a new technique of \random restrictions," whichhas since been used repeatedly even in other contexts. The result was later

94 Topic 11improved from \not polynomial size" to \at least exponential size" by Yaoand then by H�astad, whose proof is regarded as the signi�cant breakthrough.We will discuss here the weaker Furst-Saxe-Sipser version because it issomewhat simpler and provides a good opportunity to work through thetechnique of random restrictions. For this we will need a bit of probabilitytheory. If we conduct a random experiment in which there are two possibleoutcomes, success and failure, which occur with probability p and q = 1� p,and if we repeat this experiment n times independently, then the probabil-ity of obtaining exactly k successes is just �nk�pkqn�k. This is the binomialdistribution.Exercise 11.8. Let X be a random variable that \counts" the number ofsuccesses in n trials. Compute (or look up in a book on probability theory)the expected value E(X) and the variance V (X) for this random variable.CExercise 11.9. Prove Chebyshev's inequality:Pr[jX �E(X)j � a] � V (X)=a2 :Hint: Use Markov's inequality. (See Exercise 5.8.) CExercise 11.10. Suppose n = 100 and p = 0:3. Use Chebyshev's inequalityto give an upper bound for Pr[X � 17]. CExercise 11.11. Prove another inequality for the binomial distribution:Pr[X � a] � pa � 2n ;where X is as above. (This inequality is only useful when the right side isless than 1.) C� � � � �In order to show that PARITY cannot be computed by polynomial-size,constant-depth circuits, it is su�cient to prove the following claim:Claim 1. 8t 8c 8polynomials p PARITY cannot be computed using a depth tcircuit of size p(n) that has input fan-in � c (i.e., constant fan-in on level 1).Theorem 11.1. PARITY 62 AC0.Exercise 11.12. Why does this theorem follow directly from Claim 1? C

Lower Bounds for Parity 95Proof (of Claim 1). Claim 1 was proven in Exercise 11.6 for the case t = 2.There it was shown that the input fan-in cannot be constant nor can the sizeof the circuit be polynomial.Suppose the claim is false. Then there is some t > 2 such that paritycan be computed by polynomial-size, depth t circuits with constant fan-in onlevel 1. Let t be the least such. Let k be strictly larger than the degree ofthe polynomial that bounds the size of the circuits, and let c be the constantthat bounds the input fan-in. We will use this to show that there is also apolynomial-size circuit family of depth t� 1 with constant input fan-in thatcomputes parity. (It is worth noticing that both the degree of the polynomialbounding the size and the constant bounding the input fan-in will increasewhen we reduce the depth.) This will contradict the minimality of t andestablish the claim.The strategy for producing the new circuits is the following: LetS1; S2; S3; : : : be the supposed depth t circuit family for PARITY. We willconstruct S0n (a new depth t� 1 circuit in the circuit family S01; S02; S03; : : : forPARITY) by taking an element of the S-sequence with more than n variables(say S4n2) and then as in Exercise 11.5 replacing (the appropriate) 4n2 � nof the variables with the constants 0 and 1, leaving a circuit with n inputvariables. This circuit will be constructed in such a way that we can use thedistributive laws (Exercises 11.2 and 11.3) to reverse the order of the AND-and OR-gates on levels 1 and 2 without increasing the size of the circuit ex-ponentially, as happens in general (see Exercise 11.3). For this it is su�cientto show that each gate on level 2 depends on only a constant number of inputvariables. This guarantees that after application of the distributive laws, thenew circuits will have constant input fan-in (see Exercise 11.3). After thistransformation, the new circuit will have the same type of gates on levels 2and 3, so these can be collapsed to a single level, leaving a depth t�1 circuit.The size of the resulting circuit S0n will be quadratic in the original size, sothe degree of the polynomial that bounds the size doubles.The word \appropriate" in the preceding paragraph is loaded. Just howare we to �nd an \appropriate" constant substitution? Here is the new idea:try a random substitution (usually called a random restriction). If we canshow that the probability of getting an appropriate substitution is positive,then we can conclude that one exists.We use the following random restriction: For each variable xi, independentof the others, we perform the following random experiment, which has threepossible outcomes:� with probability 1=pn the variable xi remains,� with probability 1�1=pn2 the variable xi is set to 0.� with probability 1�1=pn2 the variable xi is set to 1.How does one arrive at these probabilities? A boundary condition is thatthe probabilities for 0 and 1 must be equal so that in the following discus-

96 Topic 11sion we will be able to exchange the roles of AND and OR (by symmetry).In addition, it turns out to be useful to set the probability that a variableremains as small as possible. On the other hand, this probability can only bepolynomially smaller than n for reasons which we will discuss below.Let r denote a random restriction and let xri be the result of this restrictionon xi, so xri 2 fxi; 0; 1g. Let Sr denote the circuit S after applying therandom restriction r. By Exercise 11.5 it is clear that Sr is once again aparity function { or the complement of parity { on fewer variables. In anycase, by Exercise 11.4 there is a circuit for parity with the same depth andsize.By Exercise 11.8 the expected value of the number of variables in Srn isn � 1pn = pn. The variance is n � 1pn � (1� 1pn) � pn. The number of variablesactually remaining must be in inverse polynomial relationship to the originalnumber of variables and not decrease exponentially, otherwise we will not beable to bound the size of the resulting circuit with a polynomial in the numberof remaining variables. The following exercise shows that this happens withhigh probability.Exercise 11.13. Use Chebyshev's inequality (see Exercises 11.9 and 11.10)to show that Pr[there are fewer than pn=2 variables in Srn] = O(1pn). CThis means that with high probability there are at least pn=2 variablesremaining. In what follows, we are only interested in random restrictions thatleave at least that many variables.Exercise 11.14. At �rst glance it is not yet clear how to produce a newsequence S01; S02; S03; : : : without any gaps. For every n the random restrictionapplied to the circuit S4n2 produces a circuit that has on average 2n inputsand with high probability at least n inputs. Explain how to convert the resultsof this process into a sequence S01; S02; S03; : : : without any gaps. CNext we will give upper bounds for the probabilities that our randomrestriction has certain undesirable properties. If we succeed in showing, as inExercise 11.13, that each of these probabilities can be bounded above by afunction that approaches 0 as n ! 1, then the probability that a randomrestriction has any of these (�nitely many) properties will (for large enoughn) be less than 1. From this it follows that for every large enough n theremust exist a restriction that has only desirable properties.First we show that with high probability the gates on level 2 (after therestriction) depend on only a constant number of inputs. For this argumentwe can assume that the gates on the �rst level are OR-gates and thus thegates on the second level are AND-gates. (If the situation is reversed, then byduality we can repeat the argument given below exchanging AND and OR,0 and 1, and xi and xi.)For our probability approximations we will take an arbitrary, �xed AND-gate on level 2 and show that the random restriction has an undesirable e�ect

Lower Bounds for Parity 97{ in this case, dependence on too many variables { with probability at mostO(1nk). Since altogether there are only O(nk�1) gates, it follows that theprobability of this undesirable e�ect occurring at any AND-gate on level 2 isat most O(1nk �nk�1) = O(1n). So with high probability all of the AND-gateson level 2 have the desired property after the random restriction.Now we use induction to prove the following claim:Claim 2. For every AND-OR circuit that has input fan-in (at the OR-gates)at most c, there is a constant e = ec (depending only on c) such that theprobability that the AND-gate after a random restriction depends on morethan e variables is at most O(1nk).Proof (of Claim 2). The proof of Claim 2 is by induction on c. The base caseis when c = 1. In this case, there are no OR-gates, only the one AND-gate.We distinguish two cases, depending on whether the AND-gate has large orsmall fan-in.Case B1. The fan-in of the AND-gate is at least 4k � lnn.In this case it is very likely that there is at least one input to the ANDgate that has been set to 0 by the random restriction, in which case the AND-gate does not depend on any of the variables that remain after the randomrestriction.Exercise 11.15.� Show that in this casePr[AND-Gate is not set to 0] = O(1nk) : CCase B2. The fan-in of the AND-gate is less than 4k � lnn.In this case it is very likely that the random restriction sets all butconstantly many variables to constants. This is at least plausible, sincethe expected value E(X) for the number of remaining variables satis�esE(X) � (4k lnn) � (1=pn)! 0 as n!1 (see Exercise 11.11).Exercise 11.16.� Show that in this casePr[the AND-Gate depends on more than ... inputs] = O(1nk) :Note that it does not matter what constant is inserted in place of ..., andthat this may depend on k.Hint: Our solution works with the constant 18k. Use Exercise 11.11. CNow we come to the induction step. We assume that ec�1 exists and showthat ec exists. Once again there are two cases. The inductive hypothesis onlyplays a role in the second case.Case I1. Before the random restriction, the AND-gate on level 2 has at leastd � lnn OR-gates below it with disjoint input variables, where d = k � 4c.

98 Topic 11In this case we will show that it is very likely that after the randomrestriction one of the OR-gates will have had all of its inputs set to 0, whichcauses the AND-gate to also have the value 0. In this case the AND-gate doesnot depend on any inputs, and the claim is established.Exercise 11.17.� Show that in this casePr[the AND-Gate is not = 0] = O(1nk) :Hint: Remember that all of the OR-gates on level 1 have, by assumption, atmost c inputs. Also, the following relationships might be useful: aln b = blnaand ln(1� x) � �x. CCase I2. Before the random restriction, the AND-gate on level 2 has lessthan d � lnn OR-gates below it with disjoint input variables, where d = k �4c.In this case, choose a maximal set of OR-gates with disjoint variables. LetH be the set of variables that occur in these OR-gates.Exercise 11.18. How large can jH j be? CIt is important to note that in each of the OR-gates at least one variablefrom H occurs.Exercise 11.19. Why is this the case? CThere are l = 2jHj assignments for the variables inH . If we plug any one ofthese assignments into the original AND-OR circuit, then at least one inputto each OR-gate disappears. So after such plugging in, all of the OR-gateshave fan-in at most c � 1. Now we can apply the induction hypothesis. LetA1; : : : ; Al, be the l circuits that arise in this way (one for each assignment tothe variables in H). The probability that the function value of Arj (i.e., afterthe random restriction) depends on more than ec�1 variables is boundedabove by O(1nk).The function f computed by the AND-OR circuit can be completely spec-i�ed in terms of the Aj 's. As an easy example, suppose that H = fx1; x2g,so l = 4, thenf = (x1 � x2 � A1) _ (x1 � x2 �A2) _ (x1 � x2 �A3) _ (x1 � x2 � A4) :From this it follows that the probability that f depends on more than l � ec�1variables is bounded above by l �O(1nk).Instead of using the AND-OR circuit to determine the dependency of f(after the random restriction) on the input variables, we �nd it advantageousto work with the equivalent representation in terms of the Aj 's just given.With high probability, after the random restriction, H will only consist ofconstantly many variables, so that the number of remaining terms in ourexpression for f will also be constant. Let h be the random variable that

Lower Bounds for Parity 99indicates the number of remaining variables inH after the random restriction.Once again we are dealing with a binomial distribution with p = 1=pn, andwe can approximate as we did in case 2 of the base case of the induction:Exercise 11.20.� Show that Pr[h > 4cd+ 2k] = O(1nk).Hint: Feel free to use a larger constant if necessary. This size of the constantis not at issue. Use Exercise 11.11. CThus with high probability, h � 4cd+2k, and when this is the case, thenour representation of f consists of at most 2h � 24cd+2k =: m terms that arenot identically 0. Now we put together all the probability approximations: Ifwe let ec = m � ec�1, then we getPr[f depends on more than ec variables]� Pr[h > 4cd+ 2k]+m � Pr[a �xed Aj depends on more than ec�1 variables]� O(1nk) +m �O(1nk)= O(1nk) :This completes the proof of Claim 2. utNow the proof of Claim 1 is complete as well: There must exist a restric-tion that leaves enough variables; however, each AND-OR circuit on levels2 and 1 depends on only constantly many of these variables. So with onlyconstant cost, we can apply the distributive laws and get the second level tobe an OR-level and the �rst level an AND-level. But now the adjacent ORson levels 2 and 3 can be combined, leaving us with a circuit of polynomialsize, depth t� 1, and constant input fan-in, contrary to our assumption thatt is the minimal depth for which this was possible. utReferences� Furst, Saxe, Sipser: Parity, circuits, and the polynomial-time hierarchy,Mathematical Systems Theory 17 (1984) 13{27.� H�astad: Almost optimal lower bounds for small depth circuits, Proceed-ings of the 18th Annual Symposium on Theory of Computing, ACM, 1986,6{12.

100 Topic 11

12. The Parity Function Again
The lower bound theory for circuits received an additional boost throughalgebraic techniques (in combination with probabilistic techniques) thatgo back to Razborov and Smolensky.The result of Furst, Saxe, and Sipser that the parity function cannot becomputed by AC0 circuits (AND- and OR-gates, constant depth, unboundedfan-in, and polynomial size) was later proven in a completely di�erent way byA. Razborov and R. Smolensky. Now we want to work through their methodof proof and some related results. The technique is algebraic in nature butalso uses a probabilistic argument. The argument works as follows:1. First we show that every function f computed by AC0 circuits can beapproximated by a polynomial p of very low degree. Approximation inthis case means that for \almost all" n-tuples (a1; : : : ; an) 2 f0; 1gn,f(a1; : : : ; an) = p(a1; : : : ; an).2. Then we show that the parity function cannot be approximated in thissense by a polynomial of low degree.We begin with step 1. Clearly the AND-function�� �6���7 SSSox1 xn. . .ANDcan be represented as the polynomial x1 � � �xn =Qni=1 xi.Exercise 12.1. Using 1� x to represent the NOT-function and DeMorgan'slaws, give a polynomial representation of the OR-function. CThe problem with this is that in general the polynomials have degree n;that is, they contain monomials that mention all of the xi's. This can begreatly improved by a probabilistic method that goes back to Valiant andVazirani. We construct a random polynomial as follows: Let S0 = f1; : : : ; ng.Furthermore, let Si+1 � Si be chosen randomly so that each element j 2 Si

102 Topic 12is in Si+1 with probability 1=2. Now consider a sequence S0; S1; : : : ; Slogn+2generated as just explained. Let qi denote the random polynomialPj2Si xj ,which has degree 1.Now if OR(x1; : : : ; xn) = 0, this means that all xi's have the value 0.Thus all the qi's are also 0, and, therefore, the polynomial 1 � p, wherep =Qlogn+2i=0 (1� qi), is also 0. This polynomial has degree O(log n).If, on the other hand, OR(x1; : : : ; xn) = 1, then there is at least onexi = 1. We will show that in this case, the probability is � 1=2 that one ofthe polynomials qi has the value exactly 1. So in this case Pr(1�p = 1) � 1=2.Example.h hx x h h x h x x hx1 x2 x3 x4 x5 x6 x7 x8 x9 x10���S3#" !S2'& $%S1'
&

$
%S0In this example we have 10 variables, 5 of which (x2; x3; x6; x8; x9) have thevalue 1. One possible realization of the random subsets Si is indicated. Notethat in our example, S3 has exactly one variable with the value 1.So the polynomial 1�p approximates the OR-function in a certain sense.The success rate is still not very high, however; it is only 1=2. But this can besigni�cantly improved by using new, independent random numbers to gener-ate additional polynomials p, say p1; p2; : : : ; pt, and then using the polynomial1� p1p2 � � � pt { which has degree O(t logn) { for our approximation.Exercise 12.2. What is the error probability of the polynomial 1�p1p2 � � � pt?How large must t be to get an error probability below a given constant "?C.Exercise 12.3. Construct the corresponding polynomial for the AND-function. CWe still need to show that for any choice of a non-empty subset T of S0(corresponding to the variables that are true) the probability is at least 1=2that there is at least one i 2 f0; 1; : : : ; logn+2g such that the size of T \Si isexactly 1. To approximate this probability, we partition the event space intovarious cases and then compute the probability separately for each case.Case 1. For all i 2 f0; 1; : : : ; logn+ 2g, jT \ Sij > 1.Exercise 12.4. Give an upper bound for this (for us bad) case. C

Parity Again 103Case 2. There is an i 2 f0; 1; : : : ; logn+ 2g with jT \ Sij � 1.Case 2A. jT \ S0j = jT j = 1.Case 2B. jT \ S0j = jT j > 1 and there is an i 2 f1; : : : ; logn + 2gwith jT \ Sij � 1.Under the assumption that we are in case 2B, let i be such thatjT \ Si�1j > 1 and jT \ Sij � 1. The probability for jT \ Sij = 1under the condition that jT \ Sij � 1 and jT \ Si�1j =: t > 1 is�t1�2�t�t0�2�t + �t1�2�t = tt+ 1 � 23 :Exercise 12.5. Show that it now follows thatPr(there is an i with jT \ Sij = 1) � 1=2 : CNext we want to show how to simulate an AC0 circuit with size s anddepth t using our polynomials so that the error probability is at most ". Forthis we use the polynomials above for the gates, but with error probabilityfor each gate � "=s.Exercise 12.6. What is the degree of the resulting polynomial, as a functionof ", s, and t? (O-notation su�ces.) If s is polynomial in n and " a constant,what sort of function is this? (constant, logarithmic, polylogarithmic, linear,polynomial, exponential, etc.) C� � � � �In summary, for every boolean function f that can be computed by AC0circuits, a polynomial p can be randomly generated that has very smalldegree and such that for any (a1; : : : ; an) 2 f0; 1gn the probability is atleast 1� " = 0:9 (for example) that f(a1; : : : ; an) = p(a1; : : : ; an). From thiswe conclude that there must be at least one choice of a �xed polynomialp for which f(a1; : : : ; an) = p(a1; : : : ; an) for all (a1; : : : ; an) 2 S, wherejSj � 0:9 � 2n.Exercise 12.7. Justify the last claim. CNow we want to consider more carefully the possible representations ofthe boolean values TRUE and FALSE. In the polynomial approximationsabove we have tacitly identifying TRUE with 1 and FALSE with 0, as isusually done. For what we are about to do, it will be more advantageous touse the so-called Fourier representation which identi�es TRUE with �1 andFALSE with 1.Exercise 12.8. Find a linear function that maps 0 to 1 and 1 to �1. What isits inverse? C

104 Topic 12If we apply this function to our polynomial p, we get a polynomialq(y1; : : : ; yn) = 1� 2 � p((1�x1)=2; : : : ; (1� xn)=2) that for 0:9 � 2n strings inf�1;+1gn correctly simulates f (transformed to use f�1;+1g) and has thesame degree as p.Suppose now that the parity function is in AC0. Then there must be sucha function q for parity. So for 0:9 � 2n strings in f�1;+1gn, q(y1; : : : ; yn) =Qni=1 yi. That is, after this transformation, the parity function correspondsexactly to multiplication.Exercise 12.9. Why? CNow we prove the followingLemma 12.1. There is no polynomial of degree pn=2 that correctly repre-sents the function Qni=1 yi for 0:9 � 2n strings in f�1;+1gn.Corollary 12.2. PARITY 62 AC0. utProof (of the lemma). Let q(y1; : : : ; yn) be a polynomial of degree pn=2 thatcorrectly represents the function Qni=1 yi for 0:9 �2n strings in f�1;+1gn. LetS = f(y1; : : : ; yn) 2 f�1;+1gn j Qni=1 yi = q(y1; : : : ; yn)g. So jSj � 0:9 � 2n.We can assume that the polynomial q is multi-linear, that is, no variable hasan exponent larger than 1.Exercise 12.10. Why? CThe vector space L(S) (over R), which consists of all linear combinationsof vectors in S, has dimension jSj. Similarly, POL, the set of all n-variatemulti-linear polynomials of degree (n+pn)=2, is a vector space with the usualpolynomial addition (which does not increase the degree) and multiplicationby scalars in R. A basis for this vector space is the set of all monomialsQi2T xi with jT j � (n +pn)=2. Thus the dimension of this vector space isP(n+pn)=2i=0 �ni�:Exercise 12.11.� Show that this sum is strictly smaller than 0:9 � 2n < jSj.CNow we show that L(S) can be embedded by a linear transformation h (avector space homomorphism) as a subspace of POL. It is su�cient to showhow the basis vectors in L(S) { the elements of S { are mapped by h. Lets 2 S and let T be the set of indices in s where a �1 occurs. If jT j � n=2,then h(s) is the monomial Qi2T yi. if jT j > n=2, then h(s) is the polynomialq(y1; : : : ; yn)Qi 62T yi, which has degree at most (n + pn)=2 and, therefore,is in POL.Exercise 12.12. Convince yourself that for all (y1; : : : ; yn) 2 SYi2T yi = q(y1; : : : ; yn)Yi 62T yi :

Parity Again 105Therefore, the polynomials h(s) are linearly independent in POL. CSince the polynomials h(s) are linearly independent in POL, dim(POL) �dim(L(S)). This yields the contradiction0:9 � 2n � dim(L(S)) � dim(POL) < 0:9 � 2nand completes the proof of Lemma 12.1. utExercise 12.13. Improve the result that PARITY 62 AC0 to show that anypolynomial-size circuit for parn must have depth at least
(log nlog logn). C� � � � �We can use the result that parity is not in AC0 to show that this is alsothe case for other boolean functions, for example for majority. For this weintroduce a notion of reducibility that is tailored to the de�nition of the classAC0.A family of boolean functions F = (f1; f2; f3; : : :), where fn : f0; 1gn !f0; 1g, is AC0-reducible to a family G = (g1; g2; g3; : : :), if there is a constantd and a polynomial p such that for every n, there are circuits for fn that havedepth at most d and size at most p(n) that may consist of AND-gates andOR-gates (with unbounded fan-in) and also gi gates (i arbitrary).It should be clear that if F is AC0-reducible to G and G 2 AC0, thenF 2 AC0 as well.Exercise 12.14. Why? CExamples for such families of functions arePARITY = (par1; par2; par3; : : :)and MAJORITY = (maj1;maj2;maj3; : : :) ;where maj(x1; : : : ; xn) = 1 if and only if for at least n=2 of the inputs xi wehave xi = 1.Exercise 12.15. Show that PARITY is AC0-reducible to MAJORITY. CFrom this it follows immediately thatTheorem 12.3. MAJORITY 62 AC0. utIn fact, we can use this same technique to show that every symmetricboolean function is reducible to MAJORITY. A symmetric function is onethat is invariant under permutations of the input variables; that is, its valuedepends only on the sum of the input variables,Pni=1 xi. Such a function canbe completely speci�ed by a value vector of the form (f0; f1; : : : ; fn), whereeach fk gives the value of the function whenPni=1 xi = k. (So there are only2n+1 distinct symmetric functions of n variables.)

106 Topic 12Furthermore, one can show that all symmetric functions are in NC1 andthat majority is not AC0-reducible to parity. In other words, majority can-not be computed by circuits with constant depth, polynomial size, and un-bounded fan-in over f^;_;�g.The following sketch shows the situation:
'& $%
�
�
�
�
tt'

&
$
%
ppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppp ppppppppppppppppppppppppppppp
NC1MAJORITYPARITYsymmetric functionsAC0� � � � �The proof method in which a circuit (in this case a so-called perceptron)is described via a polynomial and the degree of this polynomial is comparedwith the least possible degree of a polynomial that represents the parityfunction (in order to show that the proposed circuit cannot compute parity)was �rst used by Minsky and Papert. By a perceptron we mean a depth-2circuit that has a threshold gate (also called a McCulloch-Pitts neuron) forits output gate. This means (for now) that the gates on the �rst level maycompute any boolean functions of the inputs. From the binary output values,ai 2 f0; 1g, of these functions a weighted sum is then computed, each inputto the threshold gate being assigned the weight wi 2 R. Finally, this weightedsum is compared with a threshold value t 2 R. If the sum is at least as largeas the threshold, then the perceptron outputs 1, otherwise it outputs 0. Thatis, the value of the perceptron's output is given by(1 if Pi wiai � t,0 otherwise.The threshold gate can have an unbounded number of inputs.

PPP���akPPP���akPPP���a2
PPP���a1PPP���a1......... - -PPPPPPPPq��������:- �p pp threshold gate

x1x2...xn ... w1w2wk ppppppppppppppppppppppppppppp p p p p p p p t

Parity Again 107The intended application of such circuits as classi�ers in the area of pat-tern recognition and the biological model of a neuron makes it reasonable toconsider the case where the gates on level 1 do not depend on all of the in-puts x1; : : : ; xn but only on a strict (possibly very small) subset of the inputs.The perceptron is also attractive since one had hoped that by successivelyvarying the weights, such circuits could \learn" any boolean function. Minskyand Papert showed, however, that such circuits are not capable of computingparity on x1; : : : ; xn. It is this result that we consider next. This result hasbeen credited with bringing to a halt research (or at least funding of research)in the area of neural nets, which in the 60's had just begun to ourish. Thislasted for about 20 years, until recently when { despite this negative result {the value of neural nets was again recognized.Exercise 12.16. Convince yourself that the model just described is equiva-lent to a model in which all gates on the �rst level are AND-gates, but inaddition to the input variables x1; : : : ; xn, their negations are also available.The number of inputs to an AND-gate is still required to be less than n.Sketch:
t

...

...... - -PPPPPPPPq��������:- �p pp threshold gate
x1 ... w1w2wm ppppppppppppppppppppppppppppp p p p p p p p
������

...xnx1...xn AndAndAnd
CEvery AND-gate can be described as a polynomial over f0; 1g, namelythe product of terms that are xi if the variable xi is an input to the gate and(1� xi) if its negation is an input to the gate.Example. The AND-gate that conjuncts x1, x2, and x3 is represented by thepolynomial x1(1� x2)(1� x3) = x1 � x1x2 � x1x3 + x1x2x3 :It is clear that on inputs from f0; 1g, this multi-linear polynomial rep-resents precisely the correct value of the AND-gate. Furthermore, the totaldegree of this polynomial corresponds to the number of inputs to the AND-gate, and must, therefore, be less than n. Let fi (i = 1; : : : ;m) be the poly-nomial that represents the ith AND-gate of a perceptron. These polynomialsare then added (weighted according to the threshold gate):

108 Topic 12mXi=1 wifi :This is a multi-linear polynomial in all variables x1; : : : ; xn, and still hastotal degree < n (i.e., no monomial in the sum can mention n literals). Ifsuch a circuit were capable of computing parity, then there would be somereal constant t such thatmXi=1 wifi � t () parn(x1; : : : ; xn) = 1 :In other words, the sign of the polynomial p withp(x1; : : : ; xn) = mXi=1 wifi � tdetermines the parity of the input bits x1; : : : ; xn.The next step makes use of the fact that parity is symmetric. This meansthat for any permutation �,parn(x1; : : : ; xn) = parn(�(x1); : : : ; �(xn)) :Now we build the polynomialq(x1; : : : ; xn) =X� p(�(x1); : : : ; �(xn)) :This is a multi-linear polynomial of total degree < n, the sign of which alsorepresents the parity function. The sum is over all permutations � of then-element set fx1; : : : ; xng. Furthermore, all monomials that have the samenumber of variables must occur with the same coe�cients.Exercise 12.17. Justify the last sentence. CSo the polynomial q can be written asq(x1; : : : ; xn) = sXi=0 �iti ;where s < n, �0; : : : ; �s are appropriate coe�cients, and the terms ti sum upall monomials with i variables:ti = XS�fx1;:::;xngjSj=i Yj2S xj :By the previous exercise, the polynomial q depends only on x1+ � � �+xn,and not on the particular tuple (x1; : : : ; xn). Let r be a polynomial in onevariable de�ned by

Parity Again 109r(x1 + � � �+ xn) = q(x1; : : : ; xn) :Since ti is just �x1+���+xni �, r(k) = sXi=0 �i�ki� :This is a univariate polynomial of degree s < n with the property thatr(k) > 0 exactly when k is even (for k 2 f0; 1; : : : ; ng).Sketch for n = 4: 0 1 2 3 4 - kr(k)But such a polynomial that has n zeroes must have degree at least n. Thisis a contradiction, which proves that no perceptron can compute parity. utReferences� Valiant, Vazirani: NP is as easy as detecting unique solutions, TheoreticalComputer Science 47 (1986), 85{93.� A. Razborov: Lower bounds on the size of bounded depth networks over acomplete basis with logical addition,Mathematical Notes of the Academyof Sciences of the USSR 41 (1987), 333{338.� R. Smolensky: Algebraic methods in the theory of lower bounds forBoolean circuit complexity, Proceedings of the 19th Annual Symposiumon Theory of Computing, ACM, 1979, 77{82.� N. Alon, J.H. Spencer: The Probabilistic Method, Wiley, 1992, Chapter 11.� R. Beigel: The polynomial method in circuit complexity, Structure inComplexity Theory Conference, IEEE, 1993.� M.L. Minsky, S.A. Papert: Perceptrons, MIT Press, 1969.� J. Aspnes, R. Beigel, M. Furst, S. Rudich: The expressive power of votingpolynomials, Combinatorica 14 (1994) 135{148.

110 Topic 12

13. The Complexity of Craig Interpolants
The Craig Interpolation Theorem (1957) was placed in the context of theP ?= NP and NP ?= coNP questions in a paper by Mundici (1984).The Craig Interpolation Theorem of propositional logic states that for anytwo formulas F and G in propositional logic such that F ! G there is aformula H which uses only variables occurring in both formulas such thatF ! H and H ! G. The formula H is called an interpolant of F and G.Exercise 13.1.� Prove the Craig Interpolation Theorem. CIf the formulas F and G have length n, then the question arises: How longmust H be? It turns out that the answer is inuenced by how the formulas arerepresented and that the method of encoding can have a decided impact onthe result. Branching programs and boolean circuits are two length e�cientrepresentations of boolean functions as formulas.For a given boolean function F , let size(F) be the size (number of gates)of the smallest circuit (over :;^;_) that computes F . For formulas F and Gof length n let H be an interpolant of minimal circuit size. So size(H) is theinterpolant complexity of F and G, which we denote by int(F;G). For everyn let �(n) be de�ned as�(n) = maxfint(F;G) j jF j = jGj = ng :Not much is known about the growth rate of �(n). From the fact that formulasof length n can have (almost) n variables (more exactly O(n= logn) variables)and the proof of the previous exercise, we get an upper bound for �(n) ofO(2n).Exercise 13.2. Why can't a formula of (coding-) length n contain more thanO(n= logn) many variables? CThe interesting (open) question is whether perhaps �(n) has only a poly-nomial rate of growth. A positive answer would have an interesting conse-quence for the class NP \ coNP:Theorem 13.1. If �(n) is polynomially bounded, then all languages in NP\coNP have polynomial-size circuits.

112 Topic 13For more on polynomial circuit complexity see Topics 9, 16, and 17.At �rst glance, this result seems very surprising. How does the proof work?Recall the proof of Cook's Theorem (that SAT is NP-complete, see the bookby Garey and Johnson for a proof). The proof contains a construction thatgiven any language A 2 NP and n 2 N produces in polynomial time a booleanformula Fn(x1; : : : ; xn; y1; : : : ; yp(n)) (where p is a polynomial), which we willcall Fn(x; y), so that for all x 2 f0; 1gn,x 2 A () 9y Fn(x; y) = 1 :Now let A 2 NP\coNP. Then for every n there is a Cook formula Fn(x; y)for A 2 NP and a corresponding formula Gn(x; z) for A 2 NP. Note that yand z are distinct variables, but that the x-variables are common to bothformulas.Exercise 13.3. Show that Fn ! :Gn. CBy the Craig Interpolation Theorem there must be an interpolant Hn sothat Fn ! Hn and Hn ! :Gn. Let Cn be the smallest circuit that computesthe boolean function Hn. If �(n) is polynomially bounded, then for somepolynomial q and all n, jCnj � q(n).Exercise 13.4. Show that Cn is a circuit for the characteristic function of Aon strings of length n. Since the size of Cn is polynomial in n, this impliesthat all languages in NP \ coNP have polynomial-size circuits. CNow one can ask if the proof can be modi�ed to better reveal its\quintessence." In particular, we want to generalize the right side of the im-plication as much as possible while maintaining the truth of the statement.By inspecting the proof carefully, we arrive at the following formulation:Theorem 13.2. If the function �(n) is polynomially bounded then any dis-joint pair of NP languages A1 and A2 is PC-separable. (This means that thereis a language C with polynomial-size circuits such that A1 � C and C � A2).Exercise 13.5. Why is Theorem 13.1 a (simple) corollary to Theorem 13.2?CExercise 13.6. Prove Theorem 13.2. CExercise 13.7. Show that at least one of the following statements is true:1. P = NP,2. NP 6= coNP,

Craig Interpolants 1133. An interpolant of F and G with F ! G is not, in general, computablein time polynomial in jF j+ jGj. CExercise 13.8.� Show that the hypothesis that every NP language haspolynomial-size circuits (cf. Topic 16) implies that �(n) is polynomiallybounded. CSo if one could show that �(n) is not polynomially bounded, one would haveshown that P 6= NP!ReferencesA proof of Cook's Theorem can be found in many books, including� M. Garey, D. Johnson: Computers and Intractability { A Guide to theTheory of NP-Completeness, Freeman, 1979.The Craig Interpolation Theorem is from� W. Craig: Three uses of the Herbrand-Gentzen theorem in relating modeltheory and proof theory, Journal of Symbolic Logic 44 (1957) 36{50.Further results about interpolants can be found in� E. Dahlhaus, A. Israeli, J.A. Makowsky: On the existence of polynomialtime algorithms for interpolation problems in propositional logic, NotreDame Journal on Formal Logic 29 (1988), 497{509.� Y. Gurevich: Toward logic tailored for computational complexity, in M.M.Richter et al, Computation and Proof Theory, Lecture Notes in Mathe-matics 1104, Springer, 1984, 175{216.� D. Mundici: Tautologies with a unique Craig interpolant, uniform vs.nonuniform complexity, Annals of Pure and Applied Logic 27 (1984),265{273.� D. Mundici: NP and Craig's interpolation theorem, in G. Lolli, G. Longo,A. Marja, ed., Logic Colloquium 82 North-Holland, 1984.From the assumption that �(n) is polynomially bounded, it also follows thatthe class UP has polynomial-size circuits. (UP is the class of all NP languagesA for which if x 2 A, there is exactly one witness for this; cf. the de�nitionof FewP in Topic 19.)� U. Sch�oning, J. Tor�an: unpublished manuscript.Exercise 13.8 was communicated by J. Tor�an.

114 Topic 13

14. Equivalence Problems and Lower Boundsfor Branching Programs
Branching programs are a computational model for boolean functionswhich, in comparison to circuits, have a somewhat restricted \express-ibility." For a certain (further restricted) model of branching programs,the equivalence problem is solvable in probabilistic polynomial time. Forthis model, explicit exponential lower bounds have also been proven.An interesting algorithmic problem is to determine whether two di�erentlyconstructed circuits are equivalent. Do these circuits compute the same func-tion even though they are wired di�erently? In this case, we could replacethe more complicated of the two circuits with the simpler one.It would be ideal, of course, if this problem could be solved e�ciently(say in polynomial time) on a computer. But it is well-known that the satis-�ability problem (for boolean formulas or for circuits) is NP-complete, andthere is no known algorithm for any NP-complete language that runs in poly-nomial time. Testing two circuits for equivalence is similarly hard, since theinequivalence problem is NP-complete. The naive method of trying out allpossible assignments to the variables requires exponential time. But is theresome alternative method that is cleverer and faster?In order to investigate this question, we will leave the world of circuitsand consider a new representation of boolean functions, namely branchingprograms (also called binary decision trees, or BDDs).De�nition 14.1 (Branching Program). A branching program B withboolean variables x1; x2; : : : ; xn is a directed, acyclic graph G = (V;E) withthe following types of nodes:� computation nodes: Every computation node b has exactly two out-goingedges k0 and k1, where k0 is labeled with \xi" and k1 with \xi" (for somei 2 f1; : : : ; ng).� terminal nodes: Nodes with out-degree 0 are called terminal nodes. Termi-nal nodes are divided into two categories: accepting and rejecting.There is one distinguished computation node with in-degree 0 which is calledthe start node and denoted vstart.Given an assignment x1; : : : ; xn 2 f0; 1g, the graph of B is traversedstarting with the start node until a terminal node is reached. During this

116 Topic 14traversal, edges may only be used if their labels agree with the assignment tothe corresponding variable. If the computation ends in an accepting terminalnode, then B(x1; : : : ; xn) = 1, otherwise B(x1; : : : ; xn) = 0.We say that a branching program B computes the n-place boolean functionf , if for all x1; : : : ; xn 2 f0; 1gB(x1; : : : ; xn) = f(x1; : : : ; xn) :A branching program B is one-time-only if in every path from the startnode to a terminal node, each variable occurs at most once.Two branching programs B and B0 are equivalent if for all assignmentsx1; : : : ; xn, B(x1; : : : ; xn) = B0(x1; : : : ; xn) :Exercise 14.1. Show that for every boolean function f that is computable bya branching program of size s, there is a circuit of size O(s) that computesf . CThe problem of determining whether two di�erently constructed circuitscompute the same boolean function can now be translated to the world ofbranching programs. We de�ne the language BP-INEQ as follows:BP-INEQ = fhB;B0i j B and B0 are not equivalent branch-ing programs g :Unfortunately, BP-INEQ is NP-complete. This greatly decreases ourchances of �nding an e�cient algorithm for BP-INEQ. If we were to suc-ceed, we would have shown that P = NP.Exercise 14.2.� Show that BP-INEQ is NP-complete.Hint: Reduce the satis�ability problem SAT to BP-INEQ. COne special subproblem of BP-INEQ is BP1-INEQ, in which pairs ofone-time-only branching programs are compared:BP1-INEQ = fhB;B0i j B and B0 are not equivalent one-time-only branching programs g :Testing two one-time-only branching programs for equivalence appears to besimpler; we will show that BP1-INEQ 2 RP. (For more on the class RP seeTopic 17.) So BP1-INEQ is contained in a class that is \below" NP. Thismeans that one-time-only branching programs must have a simpler structurethan is generally the case. (One should check that in the proof of the NP-completeness of BP-INEQ, it is signi�cant that no one-time-only branchingprograms are constructed.)The basic idea of the proof that BP1-INEQ 2 RP is to guess the assign-ment to the n variables. The values assigned to the variables, however, arenot chosen from f0; 1g; rather they are chosen from the larger set f1; : : : ; 2ng.

Branching Programs 117Since branching programs are only set up to handle boolean functions, weneed a procedure for turning a branching program into a function (prefer-ably a polynomial) that can take n-tuples of integers as inputs. Of course,the actual information, the boolean function that the branching program issupposed to be computing, should not be lost in this process.So the goal is to associate with any branching programB a polynomial pB ,such that for all x1; : : : ; xn 2 f0; 1g we have B(x1; : : : ; xn) = pB(x1; : : : ; xn).To this end we construct for every node of B a polynomial that is built fromthe polynomials of its predecessors:1. For the start node vstart, pvstart = 1.2. For a node v with predecessors v1; : : : ; vl ,pv = lXi=1 �i � pvi , where �i = 8<:xj if (vi; v) is labeled,with xj1� xj otherwise.3. Finally, the polynomial pB is the sum of the polynomials for the acceptingterminal nodes: pB =Xv pv ;where the sum is over accepting nodes v.Exercise 14.3.� Let B be the following branching program:����
����
����
����
����
��������

1
2

3
4

5
6- -6@@@@@R-?������ --

x2 x3
x1 x2x1 x2 x3 x2

Construct the polynomial pB and check if pB(x1; x2; x3) = B(x1; x2; x3) forall x1; x2; x3 2 f0; 1g. (Use a truth table.)Now show that the polynomial constructed in this way from any branchingprogram has the same value as the underlying branching program for anyassignment x1; : : : ; xn 2 f0; 1gHint: Prove the following claim (by induction on m):Let x1; : : : ; xn 2 f0; 1g and let Vm be the set of all nodes in B thatare reachable from vstart in exactly m steps. Then for all v 2 Vm,pv(x1; : : : ; xn) = 8<:1 v is reachable on the mth stepof B(x1; : : : ; xn),0 otherwise. C

118 Topic 14When we speak of the polynomial of a branching program, we will alwaysassume that it has been constructed by the procedure described above. Notethat it is easy to e�ciently evaluate such a polynomial pB on a particularinput (x1; : : : ; xn). In contrast, it is much more di�cult to multiply out sucha polynomial symbolically to compute its coe�cients.By the previous exercise, two branching programsB and B0 are equivalentif and only if for all x1; : : : ; xn 2 f0; 1g, pB(x1; : : : ; xn) = pB0n(x1; : : : ; xn).Exercise 14.4. Show that it is not possible (in the case of general branchingprograms) to conclude from this that for all x1; : : : ; xn 2 N , pB(x1; : : : ; xn) =pB0n(x1; : : : ; xn). C� � � � �Now comes the question, how many points must be tested for equalityin order to know whether two such polynomials are identical? How many(distinct) support points of a polynomial with n variables and degree � 1 (amulti-linear polynomial) determine the polynomial uniquely.We are aided here by the following theorem:Theorem 14.2. If p and q are di�erent multi-linear polynomials in n vari-ables, and S � R is an arbitrary �nite set with jSj > 1, then there are at least(jSj � 1)n points (x1; : : : ; xn) 2 Sn for which p(x1; : : : ; xn) 6= q(x1; : : : ; xn).Exercise 14.5.� Prove Theorem 14.2 by induction on n. CCorollary 14.3. If the n-variate, multi-linear polynomials p and q agree onthe 2n points (0; 0; : : : ; 0; 0), (0; 0; : : : ; 0; 1), . . . ,(1; 1; : : : ; 1; 1), then p and qare identical.Exercise 14.6. Why is this a consequence of Theorem 14.2 CSo if B and B0 are equivalent one-time-only branching programs, thenthe polynomials pB and pB0 are identical.Exercise 14.7. Why? CWe have now gathered the necessary tools to show that BP1-INEQ iscontained in the class RP.Theorem 14.4. BP1-INEQ 2 RP.Proof. Let B and B0 be one-time-only branching programs with associatedmulti-linear polynomials pB and pB0 . A probabilistic Turing-machine M forBP1-INEQ functions as follows:1. For every variable xi; 1 � i � n; a value from S = f1; : : : ; 2ng is chosenat random under the uniform distribution.2. If pB(x1; : : : ; xn) 6= pB0(x1; : : : ; xn), thenM accepts, otherwise the inputis rejected.

Branching Programs 119If hB;B0i 62 BP1-INEQ, then B and B0 are equivalent. In this casePr[M(hB;B0i) accepts] = 0Exercise 14.8. Why? COn the other hand, if hB;B0i 2 BP1-INEQ, then for at least half of theassignments to x1; : : : ; xn ,B(x1; : : : ; xn) 6= B0(x1; : : : ; xn) :Exercise 14.9.� Prove this.Hint: Use Theorem 14.2. CThis concludes the proof that BP1-INEQ 2 RP. ut� � � � �Next we want to compare the complexity of various statements regard-ing branching programs. The equivalence problem for general branching pro-grams is coNP-complete, as we have argued above. In contrast, the corre-sponding equivalence problem for one-time-only branching programs is incoRP, since BP1-INEQ 2 RP.A related, but potentially more di�cult problem for a class of (branching)programs is the inclusion problem: given two branching programs, decideif the boolean functions f1 and f2 they represent satisfy f1(x1; : : : ; xn) �f2(x1; : : : ; xn) (equivalently: f1(x1; : : : ; xn)) f2(x1; : : : ; xn)).If the inclusion problem can be solved e�ciently, then so can the equiva-lence problem. Thus the inclusion problem is harder: if the equivalence prob-lem does not have an e�cient solution, then the inclusion problem does noteither. This follows from the fact that f1 = f2 if and only if f1) f2 andf2) f1.For general branching programs, the inclusion problems remains coNP-complete. This follows from the NP-completeness proof for the inequivalenceproblem given above.There are, however, situations in which there is a di�erence between thecomplexity of the inclusion problem and the complexity of the equivalenceproblem for a class. For example, the inclusion problem for deterministiccontext-free languages is undecidable. The status of the equivalence problemfor deterministic context-free languages is an open question and may even bedecidable.We showed above that the equivalence problem for one-time-only branch-ing problems is in coRP. The inclusion problem, on the other hand, is coNP-complete:Theorem 14.5. The inclusion problem for one-time-only branching prob-lems is coNP-complete.

120 Topic 14Exercise 14.10.� Prove Theorem 14.5. C� � � � �Finally, we want to give an exponential lower bound for one-time-onlybranching programs with respect to an explicitly given boolean function.Note that it is not the exponential lower bound itself that is of interest { thisfollows, for example, from Exercise 9.7 { rather it is the explicit presentationof such a function.Let n be a prime number. Then the algebraic structureGF(n) = (f0; : : : ; n� 1g ; �mod n ; +mod n)is a �nite �eld. Let POL be the set of all polynomials in one variable overGF(n) with degree < n=3. There are exactly ndn=3e polynomials in POL.By the Interpolation Theorem, since GF(n) is a �eld, specifying dn=3e zeroesuniquely determines the polynomial.Now we de�ne our explicit boolean function f : f0; 1gn2 �! f0; 1g. Thegraph of every polynomial on GF(n) can be represented by an argument tuplex = (x0;0; : : : ; xn�1;n�1) in the following way: xi;j = 1 if and only if p(i) = j.Example. Let n = 7. The �rst square below represents the polynomial p(x) =x+3; the second represents the function p(x) = 2x2+3x� 1. (A black circlerepresents the boolean value 1.)
0 1 2 3 4 5 60123456 vvvvvvv 0 1 2 3 4 5 60123456 vvvvvvvOf course, some tuples x do not represent any polynomial. Our booleanfunction f : f0; 1gn2 ! f0; 1g is de�ned byf(X) = 1 () X represents a polynomial in POL :Suppose that B is a one-time-only branching program that computes f .Along every path from the start node to a terminal node, each variable isqueried at most once.Exercise 14.11. Show that along every path from the start node to anaccepting node, every variable is also queried at least once. CEvery boolean vector x induces a path through the branching program.We will call this path the x-path. Let x be given with f(x) = 1. So xrepresents a polynomial in POL. Along the x-path there must be exactly nvariables for which the query is answered 1, since there are exactly n 1's in

Branching Programs 121x. Let k(x) be the node where on the x-path where for the (n=2)th time thequery is answered with a 1.The following picture sketches the branching program with the x-path,the node k(x), and other nodes of the form k(x0) indicated.'
&
$
%
h?
??m mhh
hhh h

Exercise 14.12.� Show that for distinct x and x0 with f(x) = f(x0) = 1,k(x) 6= k(x0).Hint: Use the Interpolation Theorem for polynomials and a \cut-and-paste"argument to construct a new path x̂ from x and x0. CFrom this it follows that in B there are nn=3 distinct nodes of the formk(X) with f(X) = 1, since there are that many polynomials in POL. Sonn=3 = 2
(n) is a lower bound for the size of a one-time-only branchingprogram that computes f . Since the number of input values is m = n2, thisbound, expressed in terms of m is 2
(m1=2).ReferencesFor the proof that BP1-INEQ 2 RP see� M. Blum, A. Chandra, M. Wegman: Equivalence of free boolean graphscan be decided probabilistically in polynomial time, Information Process-ing Letters 10, No. 2 (1980), 80{82.� D. Kozen: The Design and Analysis of Algorithms, Springer, 1992, Lec-ture 40.For the coNP-completeness of the inclusion problem for one-time-only branch-ing programs see� S. Fortune, J. Hopcroft, E.M. Schmidt: The complexity of equivalenceand containment for free single variable program schemes, Proceedingsof the Symposium on Mathematical Foundations of Computer Science,Lecture Notes in Computer Science 62, Springer, 1978, 227{240.

122 Topic 14� J. Gergov, C. Meinel: On the complexity of analysis and manipulationof Boolean functions in terms of decision graphs, Information ProcessingLetters 50 (1994) 317{322.The proof of the exponential lower bound given here is new. The \cut-and-paste" technique was used in� S. �Z�ak: An exponential lower bound for one-time-only branching pro-grams, Symposium on Mathematical Foundations of Computer Science,Lecture Notes in Computer Science 176, Springer, 1984, 562{566.� M. Krause, C. Meinel, S. Waack: Separating the eraser Turing machineclasses Le, NLe, co-NLe and Pe, Theoretical Computer Science 86 (1991),267{275.The de�nition of our boolean function, is patterned after a function in� N. Nisan, A. Wigderson: Hardness versus randomness, Journal of Com-puter and System Sciences 49 (1994), no. 2, 149{167.

15. The Berman-Hartmanis Conjecture andSparse Sets
If all NP-complete languages were P-isomorphic to each other, then itwould follow that P 6= NP. This \Isomorphism Conjecture" has been thestarting point of much research, in particular into sparse sets and theirpotential to be NP-complete.In computability theory it is well known that all complete problems for theclass of computably enumerable sets (under many-one reductions) are actu-ally computably isomorphic to each other. This means that between any twosuch problems, there is a computable bijection that provides the reduction.Led by the idea that the classes P and NP are \polynomial-time analogs"of the classes of computable and computably enumerable languages (in thede�nitions of computable and computably enumerable, \�nitely many steps"is replaced by \polynomial in the input length many steps") it is natural toask whether a similar \isomorphism theorem" is true for NP-complete lan-guages as well. Precisely this was conjectured by L. Berman and J. Hartmanisin 1977:Berman-Hartmanis Conjecture (Isomorphism Conjecture)All NP-complete languages are pairwise polynomial-time isomorphic (P-isomorphic) to each other.Two languages A and B are said to be P-isomorphic if there is a polynomial-time computable bijection f that is polynomial-time invertible (i.e., f�1 isalso polynomial-time computable) and is a many-one reduction from A to B.(This implies that f�1 is also a many-one reduction from B to A.)The analogy to computability theory suggests that the conjecture shouldhold. But even if it is true, it will probably be hard to prove, sinceBerman-Hartmanis Conjecture holds =) P 6= NP :Exercise 15.1. Prove the claim just made. CIn their paper, Berman and Hartmanis showed that all the then-knownNP-complete problems were pairwise P-isomorphic. For this they showed thatall the known NP-complete languages (including SAT) have a certain prop-erty P , and that any language that is NP-complete and has property P is

124 Topic 15P-isomorphic to SAT and, therefore, to every other NP-complete languagewith property P . See the following sketch:'
&

$
%

'& $%'& $%PNP
'& $%�� p p p p p p p p p p p p p pppppppppppppppppp NP-complete languagesNP-complete languageswith property P(= P-isomorphic to SAT)sSAT

So the Berman-Hartmanis Conjecture is equivalent to the question: Doall NP-complete languages have property P ? If they do, then they are allP-isomorphic, and we will say that the many-one degree (maximal set ofmany-one equivalent languages) of an NP-complete language collapses to itsisomorphism degree (which is the isomorphism degree of SAT).So what is this property P ? Roughly, it says that all inputs x can besystematically extended with some \irrelevant" information y in such a waythat (non-) membership is not altered. Furthermore, the information y canbe easily recovered from the version of x that has been \padded" with y. Thefollowing de�nition makes this precise.De�nition 15.1. A language A � �� has property P if there are twopolynomial-time computable functions pA : ����� ! �� and dA : �� ! ��such that� pA does not alter (non-) membership in A, i.e., x 2 A, pA(x; y) 2 A,� pA is length-increasing, i.e., jpA(x; y)j > jxj+ jyj,� pA is injective, and� dA is the inverse of pA with respect to the second argument, i.e.,dA(z) = �y if z = pA(x; y),� otherwise.Note: the function pA is often referred to as a padding function.Although this de�nition appears to be quite technical and involved, itturns out that for (typical) NP-complete languages this property is easilyestablished.Exercise 15.2.� Show that SAT has property P . C

The Berman-Hartmanis Conjecture 125Next, we consider two lemmas which establish conditions under whichmany-one reductions can be converted into 1-1 reductions; and 1-1 reductions,into isomorphisms.Lemma 15.2. Let A and B be languages that each have property P andare polynomial-time many-one reducible to each other (A �Pm B and B �PmA). Then each of A and B can be reduced to the other via a polynomial-time computable injective function (1-1 reducibility) that is length-increasing(i.e., jf(x)j > jxj) and has a polynomial-time computable inverse. utExercise 15.3.� Prove Lemma 15.2.Hint: Construct the injective function using a suitable composition of themany-one reduction and the padding function. CLemma 15.3. Let A and B be languages that are polynomial-time many-onereducible to each other (A �Pm B and B �Pm A) via reductions that are in-jective and length-increasing and have polynomial-time computable inverses.Then there is a polynomial-time computable bijection between A and B thathas a polynomial-time computable inverse. In other words, the languages Aand B are P-isomorphic. utExercise 15.4.� Prove Lemma 15.3. CCombining these two lemmas and the observation that SAT has propertyP , we get the following theorem:Theorem 15.4. Every NP-complete language with property P is P-isomor-phic to SAT. ut� � � � �From today's standpoint, the evidence seems to indicate that the Isomor-phism Conjecture is probably false. (See the paper by P. Young.) But asidefrom the status of the conjecture itself, the Isomorphism Conjecture seemsto be even more signi�cant for the number of important investigations andresults to which it led. In particular, this is the case in regard to sparse sets.De�nition 15.5. A set A is called sparse if there is a polynomial p such thatfor all n 2 N , jfx 2 A : jxj � ngj � p(n).So in a sparse language, of the exponentially many possible strings of lengthless than n, only polynomially many belong to the language.Exercise 15.5. Show that SAT is not sparse by showing that there areconstants " > 0 and � > 0 such that there are at least "2�n strings of lengthat most n in SAT. C

126 Topic 15Exercise 15.6. Show that no sparse language can be P-isomorphic to SAT.CIn light of the previous exercise, one can formulate the following weakerversion of the Isomorphism Conjecture:Second Berman-Hartmanis Conjecture. If P 6= NP, then no sparse lan-guage can be NP-complete.The notion of NP-completeness in this conjecture (as in the original Isomor-phism Conjecture) is polynomial-time many-one reducibility. But it is alsointeresting to investigate this question with respect to polynomial-time Tur-ing reducibility.After important �rst steps by P. Berman and by S. Fortune, and withone eye on a technique used by R.M. Karp and R.J. Lipton, the SecondBerman-Hartmanis Conjecture was �nally proven in 1980 by S. Mahaney.For a long time, this result could only be marginally improved. An impor-tant breakthrough to more general reducibilities (namely to bounded truth-table reducibility) came in a 1991 paper by M. Ogiwara and O. Watanabe. Asomewhat more streamlined proof of this result was given by S. Homer andL. Longpr�e. Finally, based on the technique of Homer and Longpr�e, the mostcomprehensive result was achieved by V. Arvind et al.We present here the original result of Mahaney using the techniques ofOgiwara-Watanabe and Homer-Longpr�e.Theorem 15.6. If P 6= NP, then no NP-complete language can be sparse.Proof. Suppose there is a sparse language S with SAT �Pm S. Let p be thepolynomial that witnesses the sparseness of S and let f be the reduction.We must somehow algorithmically exploit the fact that exponentially manystrings in SAT of length at most n must be mapped onto only polynomiallymany strings in S to show that SAT 2 P (so P = NP).If we determine that for some pair of strings x and y, f(x) = f(y), thenthe status of x and y with respect to membership in SAT must be the same:either they are both in SAT or neither of them is. And for strings x andy in SAT we expect that this situation (namely, that f(x) = f(y)) occursfrequently.An important step in the proof consists of using a variant of SAT ratherthan SAT itself for the rest of the proof. Let C be the lexicographical orderingon the set of all strings of length at most n. For example, for n = 3 we have� C 0 C 00 C 000 C 001 C 01 C 010 C � � � C 111 :Now we de�neLeftSAT = f(F; a) j F is a boolean formula with n variables, a 2f0; 1gi, i � n, and there is a satisfying assign-ment b 2 f0; 1gn for F with a C b g :

The Berman-Hartmanis Conjecture 127Imagine the set of all 0-1 strings of length at most n arranged in a tree.Let b 2 f0; 1gn be the largest (with respect to C) satisfying assignment forF . Then for all strings a in the striped region below, (F; a) 2 LeftSAT:
TTTTTTT

TTTTT������������
EEEEEEEEEEEEb 1n0n
�

Exercise 15.7. Show that SAT �Pm LeftSAT and LeftSAT �Pm SAT. CSo LeftSAT �Pm S, say via the reduction g. Let q be a polynomial suchthat jg((F; a))j � q(jF j). Now we design an algorithm for SAT that exploitsthis reduction from LeftSAT to S.INPUT F ;f Let n be the number of variables in F gT := f � g;FOR i := 1 TO n DO T := Extend(T) END;FOR each b 2 T DOIF F (b) = 1 THEN ACCEPT ENDEND;REJECTIn the function Extend, the set T of partial assignments is extended in sucha way that after n extensions, all strings in T have length n. In order for thisto be a polynomial-time algorithm, it is important that calls to Extend donot increase the size of T exponentially but only polynomially. In order forthe algorithm to be correct, at the end of the algorithm, T must contain asatisfying assignment for F if there is one. For this it will be important thatT always contain a string a that can be extended to the largest (with respectto C) satisfying assignment b. Then at the end of the algorithm b must be inthe set T .Here is the procedure Extend:PROCEDURE Extend (T : Set_Of_Strings):Set_Of_Strings;VAR U : Set_Of_Strings;

128 Topic 15BEGINU := ;;FOR each a 2 T DO U := U [fa0; a1g END;FOR each a; a0 2 U , a C a0 DOIF g((F; a)) = g((F; a0)) THEN U := U � fag ENDEND;f Now let U = fa1; : : : ; akg, where i < j) ai C aj . gf Let m = p(q(jF j)). gIF k > m THEN U := fa1; : : : ; amg END;RETURN UEND ExtendFirst every string in T is extended by both 0 and 1. Thus U has twice asmany strings as T . Two processes are then used to reduce the size of U :If a g-value occurs twice, then the smaller of the two strings giving rise tothis value is removed from U . If U still has too many elements (more thanm) then only the smallest m are kept. Since m is polynomial in n (it is themaximum possible number of strings g(F; a) for F 2 SAT), it is clear thatthe algorithm runs in polynomial time.Correctness is established by the following exercise. utExercise 15.8.� Suppose F is satis�able. Let b = b1 : : : bn be the largestsatisfying assignment for F . Show that after each application of Extend, theinitial segment b1 : : : bi of b is in T .Hint: Be sure you understand the e�ects of Extend in terms of the tree ofassignments. CFinally, we note that the proof just given can be fairly easily extended frommany-one reductions to more general reductions (such as bounded truth-tablereductions or conjunctive reductions, for example). Furthermore, we did notmake use of the property that S 2 NP, so we have actually proven a somewhatstronger theorem, namelyTheorem 15.7. If P 6= NP, then there is no sparse language that is NP-hard(with respect to many-one reducibility). utReferencesFor more information about computability theory and proofs of the isomor-phism result in that setting see� M. Machtey, P. Young: An Introduction to the General Theory of Algo-rithms, North-Holland, 1978.� P. Odifreddi: Classical Recursion Theory, North-Holland, 1989.

The Berman-Hartmanis Conjecture 129� H. Rogers: Theory of Recursive Functions and E�ective Computability,McGraw-Hill, 1967.The original statement of the Isomorphism Conjecture appeared in� H. Berman and J. Hartmanis: On isomorphism and density of NP andother complete sets, SIAM Journal on Computing 6 (1977), 305{323.For an overview of some of the work that was generated by this conjectureas well as an indication why the conjecture is most likely false see� P. Young: Juris Hartmanis: Fundamental contributions to the isomor-phism problem; in A. Selman, ed., Complexity Theory Retrospective,Springer, 1990, 28{58).The proof of the Second Berman-Hartmanis Conjecture built on results foundin� P. Berman: Relationship between density and deterministic complexityof NP-complete languages, Symposium on Mathematical Foundations ofComputer Science, Lecture Notes in Computer Science 62, Springer, 1978,63{71.� S. Fortune: A note on sparse complete sets, SIAM Journal on Computing8 (1979), 431{433.� R.M. Karp and R.J. Lipton: Some connections between nonuniform anduniform complexity classes, Proceedings of the 12th Annual Symposiumon Theory of Computing, ACM, 1980, 302{309.and appeared in� S. Mahaney: Sparse complete sets for NP: solution of a conjecture ofBerman and Hartmanis, Journal of Computer and System Sciences 25,130{143.Extensions of Mahaney's theorem can be found in� V. Arvind et al: Reductions to sets of low information content, in K.Ambos-Spies, S. Homer, U. Sch�oning, ed., Complexity Theory: CurrentResearch, Cambridge University Press, 1993, 1{45.� S. Homer and L. Longpr�e: On reductions of NP sets to sparse sets, Pro-ceedings of the 6th Structure in Complexity Conference, IEEE, 1991, 79{88.� M. Ogiwara and O. Watanabe: On polynomial-time bounded truth-tablereducibility of NP sets to sparse sets, SIAM Journal on Computing 20(1991), 471{483.

130 Topic 15

16. Collapsing Hierarchies
The polynomial hierarchy can be de�ned in exact analogy to the arithmetichierarchy of computability theory, but it is not known if the polynomialhierarchy is a strict hierarchy of language classes. In fact, under certainassumptions about the class NP, this hierarchy \collapses."NP is the class of all languages that can be de�ned using existential quanti�-cation over a polynomial-time predicate. The \search space" of the existentialquanti�er must, however, be bounded to include only strings of length poly-nomial in the length of the input. In the following formal de�nition, NP isprecisely the class �P1 of the polynomial-time hierarchy, which is usually ab-breviated PH.De�nition 16.1. A language L is in the class �Pi of the polynomial-timehierarchy if L can be de�ned via a language A 2 P and a polynomial q asfollows: L = fx j 9qy18qy2 : : :Qqyi hy1; y2; : : : ; yii 2 Ag :In this de�nition Q = 8, if i is even and Q = 9 if i is odd. Furthermore, allquanti�ers are polynomially bounded in the following sense:9q z '(z) () 9z [jzj � q(jzj) ^ '(z)] ;8q z '(z) () 8z [jzj � q(jzj) =) '(z)] :The classes �Pi are de�ned to include all languages L such that L 2 �Pi .Finally, PH = Si�Pi . utUsually we will drop the superscripts on our quanti�ers when it is clear fromcontext that they are polynomially bounded.The following diagram shows the inclusion structure of the classes in thepolynomial hierarchy. (For more details see the books by Balc�azar, Diaz, andGabarro; Garey and Johnson, K�obler, Sch�oning and Tor�an; or Bovet andCrescenzi.)

132 Topic 16
uu uuuu uuu������HHHHHH�

�����HHHHHH������HHHHHH
...

�p0=�p0 =P �p1 =co-NP�p2�p3�p4�4�p3�p2NP=�p1 ###cccIt is not known whether or not the polynomial-time hierarchy is a stricthierarchy (i.e., whether or not �P0 (�P1 (�P2 (� � �). The analogouslyde�ned arithmetic hierarchy �00 ; �01 ; : : : from computability theory is a stricthierarchy. (The di�erence is that in the arithmetic hierarchy, the quanti�ersdo not have a polynomial length bound. So �01 is the class of all computablyenumerable languages.)Exercise 16.1. Show that the statements �Pi = �Pi+1, �Pi = �Pi , and PH =�Pi are all equivalent. (This implies a \downward separation" property: Iffor some i, �Pi 6= �Pi+1, then �P0 (�P1 (� � � (�Pi). CThe following diagram shows the inclusion structure of the polynomial-time hierarchy under the (unlikely) assumption that it \collapses" to the class�P3 .
uu uu u������HHHHHH�p0=�p0 =P �p1 =co-NP�p2�p2NP=�p1 ###ccc
ccc###u�p3=�p3 =PH

It is absolutely plausible, to take P 6= NP as a working hypothesis andto prove theorems under this \Cook Hypothesis." The hypothesis P 6= NP,in terms of the polynomial-time hierarchy, means that �P0 6= �P1 . Further-more, by the previous exercise, the hypothesis NP 6= co-NP is equivalent to�P1 6= �P2 . This second hypothesis is stronger than the �rst. Altogether,the polynomial-time hierarchy provides an in�nite reservoir of (plausible)hypotheses which could represent the working hypothesis of some theorems.

Collapsing Hierarchies 133

PH 6=�p0PH 6=�p1PH 6=�p2PH 6=�p3
++
++...
+PH 6=�pk for all k

(P 6=NP)(NP 6=co-NP)
The circuit complexity of a language L is a function ccL : N ! N suchthat ccL(n) gives the minimal necessary number of boolean gates (of the typesAND, OR, and NOT) that can be used to build a circuit that computes thecharacteristic function of L on strings of length n. If the NP-complete lan-guages are not computable via a (deterministic) polynomial time-boundedalgorithm (i.e., P 6= NP), then it could still be the case that they havepolynomial-size circuits. This would be a very interesting situation: It wouldbe possible with a certain (exponential) expenditure to build a circuit with,for example, n = 1000 inputs that is only modestly sized (polynomial in n)and is capable of e�ciently solving all instances of SAT of length (up to)1000. This means that although it would require exponentially much workdone as a preprocess { but then never repeated { one could design a fast\chip" for SAT.We want to investigate this question and eventually link this situationwith the (unlikely) collapse of the polynomial-time hierarchy.Exercise 16.2. Show that there are languages that are not in P but do havepolynomial-size circuits. CExercise 16.3.� Show that a language L has polynomial-size circuits if andonly if there is a sparse set S such that L 2 PS (i.e., L can be computed inpolynomial time relative to some sparse oracle). CInstead of L 2 PS , we can also write L �PT S and consider this as a(polynomial-time Turing) reduction of L to S. By means of the previousexercise we can express the question of whether all languages in NP havepolynomial-size circuits equivalently as the question of whether all languages

134 Topic 16in NP (or just the NP-complete languages) are reducible to sparse sets. Inthis way, this question is related to the questions surrounding the Berman-Hartmanis Conjecture of the previous topic.A language L in NP = �P1 has the formL = fx j 9y hx; yi 2 Agfor some A 2 P and a polynomially bounded existential quanti�er. For everyx 2 L there must be at least one y with hx; yi 2 A. We call such a y a witnessor a proof for the fact that x 2 A. (For example, a satisfying assignment fora formula F is a witness that F 2 SAT .)We want now to consider circuits that have not just a single output bit(which expresses whether or not x 2 L) but which also have (suitably many)additional output gates by means of which the circuit provides a witness yfor x 2 L (when this is the case). We will call such a circuit for a languagein NP a witness circuit.Exercise 16.4.� Show that if SAT has polynomial-size circuits, then SATalso has polynomial-size witness circuits (which produce in certain outputgates a satisfying assignment for the boolean formula if it is satis�able).Hint: Use the self-reducibility of SAT . CNow there is only a small step remaining to prove the following result ofR.M. Karp and R.J. Lipton:Theorem 16.2. If all languages in NP have polynomial-size circuits thenthe polynomial-time hierarchy collapses to its second level (PH = �P2).Proof. Let L be a language in�P2 . It su�ces to show that from the hypothesisit follows that L 2 �P2 . Let A be a language in P such thatL = fx j 8y9z hx; y; zi 2 Ag :Then the language L0 = fhx; yi j 9z hx; y; zi 2 Agis in NP. Since SAT is NP-complete, L0 can be reduced to SAT by apolynomial-time computable function f , i.e. f�1(SAT) = L0. This impliesthat L = fx j 8y hx; yi 2 L0g = fx j 8y f(hx; yi) 2 SATg :We claim now that the following characterization of L is possible, which showsthat L 2 �P2 :L = fx j 9c8y [c is a witness circuit and c(f(hx; yi)) producesa satisfying assignment for the formula f(hx; yi)]g .Exercise 16.5. Prove that this representation of L is correct. CThis completes the proof of Theorem 16.2 (with a much simpler proofthan was originally given). ut

Collapsing Hierarchies 135� � � � �The boolean hierarchy (over NP), similar to the polynomial-time hierarchy,arises from the fact (or conjecture) that NP is not closed under complement.The class BH is the smallest class that contains NP and is closed under theboolean operations of intersection, union and complement.A hierarchy of classes between NP and BH can be formed by beginningwith NP and systematically adding unions and intersections with coNP lan-guages.De�nition 16.3. The classes BH1;BH2; : : : of the boolean hierarchy over NPare de�ned as follows:BH1 = NP ;BH2i = fA \B j A 2 BH2i�1; B 2 NPg (i � 1) ;BH2i+1 = fA [B j A 2 BH2i; B 2 NPg (i � 1) :Exercise 16.6.� Show that BH = Si BHi. CThe inclusion structure for the boolean hierarchy is similar to that for thepolynomial-time hierarchy:
uu uuuu uuu������HHHHHH�

�����HHHHHH������HHHHHH
...
P co-BH1=co-NPco-BH2co-BH3co-BH4BH4BH3BH2NP=BH1 ###cccThe boolean hierarchy is contained in the class PNP � �P2 \ �P2 . We saythat the boolean hierarchy collapses to the kth level if BHk = co-BHk. Thefollowing result due to J. Kadin was a sensation at the 1987 Structure inComplexity Theory Conference held at Cornell University:Theorem 16.4. If the boolean hierarchy collapses at any level, then the poly-nomial hierarchy collapse at the third level. More precisely, in this case thepolynomial-time hierarchy collapses to the boolean closure of �P2 , which inturn is contained in �P3 .Proof. It is possible to systematically de�ne complete languages for the levelsof the boolean hierarchy. We sketch this below for the �rst few levels:

136 Topic 16L1 = SATL2 = fhF1; F2i j F1 2 L1 ^ F2 2 SATgL3 = fhF1; F2; F3i j hF1; F2i 2 L2 _ F3 2 SATgL4 = fhF1; F2; F3; F4i j hF1; F2; F3i 2 L3 ^ F3 2 SATg...It is easy to show that Li is complete for BHi (and so Li is complete forcoBHi). If BHi = co-BHi, then Li can be reduced to Li and vice versa. This isthe starting point for the proof. We will give the proof for the case i = 2. Thegeneral case contains the same basic argument but is technically somewhatmore involved.Suppose L2 �Pm L2, so there is a polynomial-time computable functionf that maps pairs of boolean formulas (F1; F2) to pairs (G1; G2) with theproperty thatF1 2 SAT ^ F2 2 SAT () G1 2 SAT _G2 2 SAT :As a �rst step, we will try to show that SAT 2 NP. We will not be successful,but will very nearly achieve this goal. How do we design a nondeterministicalgorithm for SAT? The following would be one attempt:INPUT F ;Nondeterministically guess a formula F 0 with jF 0j = jF j,and a satisfying assignment for F 0, so F 0 2 SAT;Compute (G1; G2) := f(F 0; F);IF G2 2 SAT THEN ACCEPT ENDThis nondeterministic algorithm accepts a certain subset of SAT , namelythe unsatis�able formulas F for which there is a satis�able formula F 0 of thesame length, so that f(F 0; F) = (G1; G2) with G2 2 SAT. We will call thisalgorithm the easy algorithm, and the formulas that it accepts will be calledeasy formulas. Clearly easy formulas are unsatis�able, but perhaps they donot make up all unsatis�able formulas. We will call a formula hard if it isunsatis�able but not easy. SoF is hard () F 2 SAT^ 8F 0[jF 0j = jF j =) f(F 0; F) = (G1; G2) ^G2 2 SAT] :We note at this point that the property of being hard can be described witha �P1 predicate.But how do we get the hard formulas? The fact that they are hard is thekey. Fix an arbitrary hard formula F̂ of length n. With the aid of this oneformula, we can correctly nondeterministically accept all other unsatis�ableformulas of this length by means of the following algorithm:

Collapsing Hierarchies 137INPUT F ;Compute (G1; G2) := f(F; F̂);IF G1 2 SAT THEN ACCEPT ENDWhy is this algorithm correct? Since F̂ is hard, f(F; F̂) produces a pair offormulas (G1; G2) such that G2 2 SAT. Since F̂ 2 SAT, we have the followingequivalence: F 2 SAT () G1 2 SAT ;or equivalently, F 2 SAT () G1 2 SAT :This demonstrates that the algorithm is correct. This algorithm is unusualin that �rst we need to be given n bits of information (F̂), but then param-eterized with this information (called advice), the algorithm is correct for allformulas of length n. For a given hard formula F̂ we will call this algorithmthe F̂ -algorithm.We have come very close to demonstrating that SAT 2 NP, but have fallenjust short (because of the need for advice in the previous algorithm). Never-theless, what we have done is su�cient to show a collapse to the polynomial-time hierarchy to �P3 � P�P2 . Let L 2 �P3 . L can be represented asL = fx j 9u8v9w hx; u; v; wi 2 Agfor some language A 2 P. LetL0 = fhx; u; vi j 9w hx; u; v; wi 2 Ag :L0 2 NP, so there exists a reduction g from L0 to SAT. So L can bewritten as L = fx j 9u8v g(hx; u; vi) 62 SATg :If we could replace the reference to SAT with some NP-predicate (this wouldamount to SAT 2 NP) then we would have a �P2 characterization of L. Aswe have said, we are not able to achieve this. But consider the followinglanguage: B = f1n j there is a hard formula of length ng :The language B is in �P2 . Furthermore, letC = fx j 9u8v [g(hx; u; vi) is not acceptedby the easy algorithm]g :Then C 2 �P2 . Now considerD = fx j 9F̂ [F̂ is hard ^9u8v [g(hx; u; vi) is not accepted by the F̂ -algorithm]]g :

138 Topic 16D is also in �P2 . The language L can now be recognized by the followingdeterministic oracle algorithm using the languages B,C, and D as oracles.In this algorithms, m is a suitable polynomial in jxj that gives the length ofg(hx; u; vi).INPUT x;IF 1m(jxj) 2 B THENIF x 2 D THEN ACCEPT ENDELSEIF x 2 C THEN ACCEPT ENDEND;REJECTThis oracle machine asks exactly two of the three oracle questions 1m(jxj) 2 B,x 2 D, and x 2 C. Since this is a constant number of oracle queries, thelanguage L is in the boolean closure of the class �P2 . utReferencesFor general information about the polynomial-time hierarchy see� L.J. Stockmeyer: The polynomial-time hierarchy, Theoretical ComputerScience 3 (1977), 1{22.� C. Wrathall: Complete sets and the polynomial-time hierarchy, Theoret-ical Computer Science 3 (1977), 23{33.Theorem 16.2 was originally proved in� R.M. Karp, R.J. Lipton: Some connections between nonuniform and uni-form complexity classes, Proceedings of the 12th Symposium on Theoryof Computer Science, ACM, 1980, 302{309.Since then, the point of collapse has been improved from �P2 to ZPPNP; see� N.H. Bshouty, R. Cleve, S. Kannan, C. Tamon: Oracles and queries thatare su�cient for exact learning, COLT 1994.(For more about the class ZPP see Topic 17.)For a more detailed exposition of the boolean hierarchy see� Cai, Gundermann, Hartmanis, Hemachandra, Sewelson, Wagner, Wech-sung: The Boolean hierarchy I & II, SIAM Journal on Computing 17(1989), 1232{1252 and 18 (1989), 95{111.Theorem 16.4 appeared in� Kadin: The polynomial hierarchy collapses if the Boolean hierarchy col-lapses, SIAM Journal on Computing 17 (1988), 1263{1282.

Collapsing Hierarchies 139See also� R. Chang, J. Kadin: The Boolean hierarchy and the polynomial hierarchy:a closer connection, Proceedings of the Structure in Complexity TheoryConference, IEEE, 1990, 169{178.

140 Topic 16

17. Probabilistic Algorithms,Probability Ampli�cation,and the Recycling of Random Numbers
Probabilistic algorithms require (stochastically independent and uniformlydistributed) random numbers, and in general the smaller the probabilityof error is supposed to be, the more random numbers are required. Herewe introduce a method, whereby random numbers already used by analgorithm can be \recycled" and then reused later in the algorithm. Inthis way it is possible to drastically reduce the number of random numbersrequired to obtain a speci�c bound on the error probability.A probabilistic algorithm can make decisions depending on chance. This canbe modeled by a Turing machine in which each con�guration may have several(but only �nitely many) \next" con�gurations, each of which is chosen withequal probability. By introducing probability the decision and running timeof an algorithm (accept or reject, 0 or 1) on input x become random variables.The concept of acceptance is de�ned here di�erently than it is for non-deterministic machines. A string x is accepted by a probabilistic algorithmif the probability that the algorithm accepts x is > 1=2. More generally, onecan �x an arbitrary threshold probability value � 2 (0; 1) and say that astring x is accepted if the probability of acceptance is greater than �.De�nition 17.1. A language L is in the complexity class PP (probabilisticpolynomial time) if there is a polynomial time-bounded probabilistic algorithmand a threshold value � 2 (0; 1) such that L consists of precisely those stringsthat are accepted with probability > �.An algorithm that demonstrates that a language belongs to PP will be calleda PP-algorithm.The notion of a polynomial time-bound in the de�nition above meansthat for every realization of the random variables, T (x) (the running timeof the algorithm on input x) is bounded by p(jxj), where p(n) is some �xedpolynomial.In this topic, we are primarily interested in probabilistic algorithms thatexhibit a \probability gap" between the accepted and rejected strings. Thismeans that not only is the probability > � when x 2 L and � � when x 62 L,but in fact, the algorithm ful�lls a stronger condition: If x 2 L, then theprobability of acceptance is � � + "=2, and if x 62 L then the probability is

142 Topic 17� �� "=2 (for some " > 0). So there is a gap of " between the probabilitiesof acceptance for the strings x 2 L and the strings x 62 L.0 � 1x 2 Lx 62 L -� "De�nition 17.2. A language L is in the class BPP (bounded-error prob-abilistic polynomial time), if there is a PP-algorithm for L with thresholdprobability �, and a probability gap ", such that the condition above is satis-�ed. That is, L is accepted in the sense of a PP-algorithm, and the probabilitythat a string x is accepted is never in the range (�� "=2; �+ "=2).A probabilistic algorithm that ful�lls the de�nition above is called a BPP-algorithm. It is clear that P � BPP � PP.De�nition 17.3. A language L is in the class RP if there is a BPP-algorithmfor L such that " = 2�. That is, if x 62 L, then the probability that thealgorithm accepts on input x is 0.Sketch: -� " x 2 Ltx 62 L 0 1�This acceptance criterion is a strengthening of the requirement for an NPlanguage, so it is clear that P � RP � NP and P � RP � BPP. The inclusionrelationship between NP and BPP is an open question. We will come back tothis relationship shortly; in particular, the inclusion NP � BPP is unlikely,since it implies a collapse of the polynomial hierarchy (cf. Topic 16).De�nition 17.4. A language L is in the class ZPP (zero error probabilisticpolynomial time) if and only if L 2 RP and L 2 RP. That is, ZPP = RP \coRP.Exercise 17.1. The name \zero error" comes from the fact that for thelanguages L 2 ZPP, one can give a polynomial time-bounded probabilisticalgorithm and a constant " so that on input x with probability p > ", thealgorithm answers correctly (x 2 L or x 62 L) and with probability 1 � pthe algorithm answers \I don't know." So in contrast to the class BPP, thealgorithm never outputs a wrong assertion.Show that for any language L 2 ZPP there is such an algorithm withthree output values (accept, reject, don't know). CExercise 17.2.� Prove that ZPP is precisely the class of languages thatpossess probabilistic algorithms of the following type: the algorithm always

Probabilistic Algorithms 143outputs the correct answer (accept or reject, never \don't know") and theexpected running time is polynomial. CThe following diagram indicates the inclusion structure of these proba-bilistic classes in comparison to P and NP:

uP@@@@@
@@@ �������

�tt t t@@@��� t BPP @@@@@@@
@��������
tPP

NP co-NPco-RPRPp p
The problems below the dotted line can be considered e�ciently solvable\for all practical purposes." In particular, all of them have polynomial-sizecircuits. The main reason for this is related to the fact that all of them permit\probability ampli�cation." This will be our next topic of discussion.� � � � �The probability gap that exists in the de�nitions of the classes BPP, RPand ZPP plays an important role with regard to probability ampli�cation.This means that with only a polynomial increase in running time, we canmodify our algorithms, for example in the case of BPP, so that strings in thelanguage are \almost always" accepted, and strings not in the language are\almost never" accepted.Sketch: x 2 Lx 62 L0 1In the case of the class RP { and hence also for ZPP { the probabilityampli�cation is relatively easy to obtain. Accepting computations are alwayscorrect, so in this case we know that x 2 L. We only need to mistrust therejecting computations. Suppose we have been given an RP-algorithm for alanguage L. This algorithm accepts strings in the language with a certainprobability � ". By running the algorithm several times on the same input,each time with new random numbers, so that the individual results of this

144 Topic 17experiment are independent, and accepting only if at least one of the indi-vidual results was an accepting computation, we obtain an algorithm with asigni�cantly larger probability gap.Exercise 17.3. How large is the probability gap after t trails? To get an errorprobability of � 2�n, how many times must the algorithm be repeated? CThe situation is not quite so easy for BPP-algorithms. Here we mustmistrust both the accepting computations and the rejecting computations,since both results can be wrong some of the time. Although neither result is acertain criterion for x 2 L or x 62 L, each o�ers a certain amount of evidence,evidence which can mount in favor of one decision or the other with repeatedtrials. LetM be a BPP-algorithm with threshold value � and probability gap". The following algorithm yields the desired probability ampli�cation (i.e., alarger probability gap):INPUT x;s := 0;FOR i := 1 TO t DOSimulate M on x; let the result be y;IF y=\accept" THEN s := s+ 1 END;END;IF s > �t THEN ACCEPTELSE REJECT ENDThis is a Bernoulli experiment since a random experiment with a certainprobability p of success is repeated independently t times. In our case p �� + "=2 if x 2 L, and p � � � "=2 if x 62 L. So the probability that thisalgorithm gives a \false reject" when x 2 L is at most�tXi=0 �ti� � i � (1�)t�i ;where = �+ "=2.Exercise 17.4.� Show that this function is exponential in 1=t. How largemust t be chosen to bring the probability of error under 2�n? Give a similarapproximation of the error for the case that x 62 A.Hint: Use Cherno� bounds or Bernstein's law of large numbers. CSo as in the simpler case of RP, we get a linear relation between t and n ifthe goal is an exponentially small probability of error.In summary, for every language L 2 BPP and for every polynomial pthere is a BPP-algorithmM for the language L with threshold value � and aprobability gap of 1� 2�p(n), where n is the length of the input. This meansthat the probability of error on input x is less than 2�p(jxj).

Probabilistic Algorithms 145So, for example, if one chooses p(n) = 2n, the probability of error isalready so small that for most random choices z made by the algorithm, thealgorithm is always correct with this �xed z for all x of length n. That is,this z serves as \advice," from which membership of all strings of length ncan be correctly decided (cf. Topic 16).Exercise 17.5. From this it follows that all languages in the class BPP havepolynomial-size circuits (cf. Topics 16 and 13). Justify this claim. CWith the results of Topic 16, we now get the following theorem immedi-ately:Theorem 17.5. If NP � BPP, then the polynomial hierarchy collapses to�P2 .Exercise 17.6.� Show the following result: If NP � BPP, then NP = RP.Hint: It su�ces to show that SAT 2 RP. Use a BPP-algorithm for SATto with small error rate and the self-reducibility of SAT to �nd a potentialsatisfying assignment for the input formula. If the probabilistically generatedassignment is not a satisfying assignment, then reject. C� � � � �In the last section we saw that in order to improve the probability gapfrom " > 0 (for example, " = 1=2) to " = 1�2�
(k), we needed to repeat thealgorithm O(k) times and then make a decision based on majority vote. Thisshrinks the probability of error to 2�
(k). If the underlying probabilisticalgorithm requires r random bits, then our new algorithm requires O(rk)random bits.If one takes the perspective that not only computation time and memoryuse are costly resources to be minimized, but also the number of randombits, then one could attempt to achieve the probability ampli�cation withthe smallest possible number of random bits. It seems plausible that thenumber of random bits could be reduced when one considers that each blockof r random bits used by the algorithm really only serves to get 1 bit ofinformation, namely whether the probabilistic algorithm accepts some inputwith those r random bits. That is, the relative entropy of r bits on a givendecision of the probabilistic algorithm is still very high. We just need to �nd away to \recycle" (better re-prepare) the r random bits so that no (signi�cant)dependency results. That this is possible is essentially due to the method of\universal hashing" and an analysis presented in the \Leftover Hash Lemma"below.The solution to the problem will look like this: After using the r randombits, we will use a hash function h to obtain s < r \recycled" bits, which arethen augmented with r � s \fresh" random bits to form r random bits forthe next trial. This process is then iterated for each trial.

146 Topic 17r random bits ����h ppppppps Bits ����h ppppppps Bits...
p p p p p p p p p p p p p p p p pppppppppppppppppp�� r � s random bitsr � s random bitsThe sequence of r-bit \pseudo-random" numbers that arises in this way canthen be used in place of the original k independently chosen random numbers.Now we approximate the number of actual random bits used. We needr bits for the �rst random number and r � s for each subsequent (pseudo-random) number. The function h will be chosen randomly from a class ofso-called universal hash functions. We will see that the selection of h can bedone with O(r) bits. Altogether we need r +O(r) + (r � s) � (k � 1) randombits. We will see that r � s can be chosen so that r � s = O(k). So weneed O(r + k2) random bits. (In fact, it is possible { by other methods {to further reduce the number of random bits required to O(r + k).) This isa drastic improvement over our original probability ampli�cation algorithmwhich required O(rk) random bits.De�nition 17.6. A class H of hash functions from f0; 1gr to f0; 1gs (s < r)is called universal, if for every x; y 2 f0; 1gr with x 6= y,Pr[h(x) = h(y)] = 1=2s :The probability above is over h chosen uniformly at random from H. (In thiscase the probability of a collision is the same as if h(x) and h(y) are chosenuniformly at random from f0; 1gs).A class H of hash functions from f0; 1gr to f0; 1gs (s < r) is called almostuniversal, if for every x; y 2 f0; 1gr with x 6= y,Pr[h(x) = h(y)] = 1=2s + 1=2r :Let's try the following class of hash functions. Let p � 2r be a primenumber with bit-length O(r). The hash functions in H are speci�ed by givingtwo numbers a; b 2 [0; p� 1]. The hash function h = hp;a;b is de�ned so thath(x) is the s least signi�cant bits of the number (ax+ b) mod p. This can beexpressed as hp;a;b(x) = ((ax+ b) mod p) mod 2s :It is clear that for any x 6= y and randomly chosen values a and b, the value((ax+b) mod p)�((ay+b) mod p) is uniformly distributed in [0; p�1]�[0; p�1].

Probabilistic Algorithms 147(This uses the fact that GF(p) is a �eld.) So this class of functions would beuniversal.The restriction to the last s bits, however, destroys the uniformity of thedistribution, and, therefore, the universality of the hash functions.Exercise 17.7.� Show that the class H de�ned above is an almost universalclass of hash functions. CDe�nition 17.7. Let D and D0 be probability distribution on a �nite set S.We say that D and D0 are "-similar if for every subset X � S,jD(X)�D0(X)j � " :Here D(X) is the probability of X under the distribution D, so D(X) =Px2X PrD(x).A distribution D is "-almost uniformly distributed if D and the uniformdistribution on S are "-similar.The collision probability of a distribution D is the probability that twoelements x and y, chosen independently according to D, are the same.The following lemma shows that for an (almost) universal class of hashfunctions an amazing amount of uniformity holds if we choose h randomlyfrom H , but choose the argument x at random from an unknown but \largeenough" set.Lemma 17.8 (Leftover Hash Lemma). Let X be an arbitrary subset off0; 1gr with jX j � 2l. Let H be an almost universal class of hash functionsfrom f0; 1gr to f0; 1gs. Suppose r � l > s and let e = (l � s)=2. Then thedistribution of (h; h(x)) is 1=2e-almost uniform on the set H � f0; 1gs.Proof. We show the proof in two steps:Step 1. The collision probability of the distribution (h; h(x)) is at most(1 + 2=2e)=(jH j2s).Step 2. Let D be a distribution on a �nite set S. If the collision probabilityof D is at most (1 + 2�2)=jSj, then D is �-almost uniformly distributed onS. It is clear that the statement of the lemma follows immediately from Steps1 and 2, which are proven below. utExercise 17.8.� Prove Step 1. CProof (of Step 2). Suppose D is not �-almost uniformly distributed. Thenthere is a subset Y of S with D(Y) > jY j=jSj + �. Let � > � be such thatD(Y) = jY j=jSj + �. The collision probability of D is given by Pr[d1 = d2]

148 Topic 17where d1 and d2 are chosen at random according to D. We use Y to partitionthe probability space. The probability for d1 = d2 under the condition thatd1; d2 2 Y is at least 1=jY j; and the probability for d1 = d2 under thecondition d1; d2 62 Y is at least 1=(jSj � jY j). So the collision probability isat least D(Y)2jY j + (1�D(Y))2jSj � jY j = 1jSj + �2jY j + �2jSj � jY j ;which is obtained by substituting jY j=jSj+� for D(Y) and simplifying. Thisexpression is minimized when jY j = jSj=2. In that case, the collision probabil-ity is at least (1+4�2)=jSj > (1+4�2)=jSj, which contradicts our assumption.utLet M be a BPP-algorithm for a language L that requires exactly r ran-dom bits to process an n-bit input. Let the probability of error be somewherebetween 1=4 and 1=3. (For technical reasons we must also place a lower boundon the error.) So we havex 2 L) �2=3 � Pr[M(x) = 1] � 3=4 ;1=4 � Pr[M(x) = 0] � 1=3 ;x 62 L) �1=4 � Pr[M(x) = 1] � 1=3 ;2=3 � Pr[M(x) = 0] � 3=4 :Let x1; x2; : : : ; xk be the sequence of pseudo-random numbers generatedby the method and hash functions described above. We want to study theprobabilistic behavior of the algorithm that uses the xi's as random bits in ksimulations of M , and then decides based on a majority vote whether x 2 L.The bit sequence x1x2 : : : xk is certainly not uniformly distributed f0; 1grk, itisn't even almost uniformly distributed, since only O(r+k2) genuine randombits were used to generate it. So most of the 0-1 sequences cannot even occur,and thus have probability 0. What is important for us is that the bit-sequenceb(x1)b(x2) : : : b(xk), whereb(xi) = �1 if M with random number xi accepts,0 if M with random number xi rejects.approximates the distribution that one gets by running the algorithm Mk times using new random numbers for each simulation and noting the bitsequence b1b2 : : : bk.Without loss of generality, we may assume that the input x 2 L, so2=3 � Pr[bi = 1] = p � 3=4. Suppose there is a small number ", so that the\real" sequence b1b2 : : : bk and the \simulated" sequence b(x1)b(x2) : : : b(xk)are "-similar.Exercise 17.9.� If we use genuine random numbers we know that the prob-ability of error of the majority voting algorithm is 2�
(k). Approximate how

Probabilistic Algorithms 149small the error bound " must be (as a function of k) so that using pseudo-random numbers instead of genuine random numbers still results in an errorprobability of at most 2�
(k). CNow we prove the following claim by induction.Claim. For all i � 0, the distribution of b(x1) : : : b(xi)hxi+1, where xj is thejth pseudo-random number as described above, is "i-similar (for some "i yetto be determined) to the following distribution: The �rst i bits are chosenindependently at random to be 1 with probability p and 0 with probability1 � p; then h is chosen uniformly at random from H ; this is followed by astring chosen uniformly at random from f0; 1gr.Proof (of the claim). If i = 0, we only need to consider the distribution ofhx1. In this case, this is uniformly distributed, so "0 = 0.We also consider the case where i = 1 separately, since it is instructive forthe inductive step. Let x1 be chosen at random from f0; 1gr. We must showthat the distribution of b(x1)hx2 is "1-similar to a \correct" distribution (oneas is described in the statement of the claim, with i = 1) for some small "1.It is su�cient to show that b(x1)hh(x1) is similar to a distribution wherethe �rst bit is chosen according to the (p; 1� p)-distribution and h is chosenrandomly from H and the last s bits are chosen uniformly at randomly fromf0; 1gs (independent of each other). Since x1 is random, b(x1) is distributedaccording to (p; 1 � p). Under the assumption that b(x1) = a 2 f0; 1g, wemust show that hh(x1) is nearly uniformly distributed on H � f0; 1gs. Thisis where the Leftover Hash Lemma helps. Under the given condition, westill have p � 2r (or (1 � p)2r), so at least 2r=4 choices available for x1. Thestatement of the lemma is satis�ed if we put l = r�2. The lemma then yieldsa bound of "1 = 2�e = 2�(l�s)=2 = 2�(r�s�2)=2 :Now comes the induction step. By the inductive hypothesis, the claim istrue for i� 1, so the distribution of b(x1) : : : b(xi�1)hxi is "i�1-similar to thecorrect distribution. We want to show the claim for i. We need to comparethe distribution of b(x1) : : : b(xi)hxi+1 with the correct distribution, which werepresent as b1 : : : bihz. It su�ces to show that b(x1) : : : b(xi)hh(xi) is similarto the distribution of b1 : : : bihv, where the bj 's are chosen independentlyaccording to the (p; 1� p)-distribution, h is chosen uniformly from H , and vis chosen uniformly from f0; 1gs. The following claim is useful:Let F , G, and H be random variables such that the distributionof F is �1-similar to the distribution of G. Furthermore, let t be atransformation such that the distribution of t(G) is �2-similar to H .Then H and t(F) are �1 + �2-similar.Sketch:

150 Topic 17
F G

t(G)t(F) H6 6ppppppppppppppppppp pExercise 17.10. Prove this claim. CNow we put F = b(x1) : : : b(xi�1)hxi ;G = b1 : : : bi�1hz ;H = b1 : : : bi�1bihv :and de�ne a transformation t byt(b1 : : : bi�1hz) = b1 : : : bi�1b(z)hh(z) :Then we get t(G) = b1 : : : bi�1b(v)hh(v) ;t(F) = b(x1) : : : b(xi�1)b(xi)hh(xi) :With this choice of F , G, H , and t; F and G are "i�1-similar (by the inductivehypothesis). Furthermore, t(G) and H are "1-similar, as in the case i = 1.It follows that H and t(F) are ("1 + "i�1)-similar. But this is precisely theinductive claim, if we set "i = "i�1 + "1, i.e., "i = i"1.From the claim with i = k it follows that the bits b(x1); : : : ; b(xk) arek"1 = k=2(r�s�2)=2-similar to the distribution sets each bit to be 1 withprobability p and 0 with probability 1� p.All that remains is to determine the degrees of freedom s. We do thisby setting (r � s � 2)=2 = k, so s = r � 2k � 2. Then we get a bound ofk=2k = 2�
(k) on the similarity, which by Exercise 17.9 is good enough toobtain the desired probability ampli�cation. utRemarks. The proof above is still missing one detail: somehow we need to�nd the prime number p used in the de�nition of the hash function class H .This requires another probabilistic test (which was previously known). Fur-thermore, it is possible we may need to test several n-bit strings for primalitybefore a suitable candidate is found. This seems to require an unavoidablenumber of random bits, which perhaps brings our upper bound on the num-ber of random bits into question. Impagliazzo and Zuckerman, to whom thismethod of recycling random bits is due, actually used another class of hashfunctions that does not have this di�culty, but which is harder to analyze.

Probabilistic Algorithms 151Another interpretation of the result presented here is that the sequenceof pseudo-random numbers x1; : : : ; xk appear to be genuinely random forevery statistical test that can be performed in polynomial time: the sequenceb(x1); : : : ; b(xk) of \test results" di�er in their probability distribution onlyminimally from the expected distribution b(z1); : : : ; b(zk), where the zi's aregenuine random numbers. (The only boundary condition is that the testshould not output 0 (or 1) too infrequently, cf. the Leftover Hash Lemma.)Sketch: Testxi b(xi) 2 f0; 1g-
ReferencesAn introduction to probabilistic complexity classes appears in many textbooks, including books by the following authors: Balc�azar, Diaz, and Gabarr�o;Brassard and Bratley; Bovet, and Crescenzi; Gurari; Welsh; Sch�oning (Com-plexity and Structure); and K�obler, Sch�oning, and Tor�an.For more on universal hashing see� Cormen, Leiserson, Rivest: Introduction to Algorithms, MIT Press,McGraw-Hill, 1990.The method of recycling random numbers comes from� R. Impagliazzo, D. Zuckerman: How to recycle random bits, Symposiumon Foundations of Computer Science, IEEE, 1989, 248{253.The elegant method used here to prove the induction step is thanks toJ. K�obler.Exercise 17.5 is from� C.H. Bennett, J. Gill: Relative to a random oracle A, PA 6= NPA 6=co-NPA with probability 1. SIAM Journal on Computing 10 (1981), 96{113.Exercise 17.6 is from� K. Ko: Some observations on the probabilistic algorithms and NP-hardproblems, Information Processing Letters 14 (1982), 39{43.and the solution presented in the back of the book is from� U. Sch�oning: Complexity and Structure, Lecture Notes in Computer Sci-ence 211, Springer 1986.

152 Topic 17

18. The BP Operator and Graph Isomorphism
The following results suggest that the Graph Isomorphism problem is notNP-complete, since, unlike the known NP-complete problems, Graph Iso-morphism belongs to a class that can be de�ned by means of the BP.operator, an operator that has proven useful in many other applicationsas well.In this section we want to introduce a very useful operator notation thatarises out of the observations about probabilistic algorithms made in Topic 17and that will make possible the main result of this topic, namely that thegraph isomorphism problem is not NP-complete unless the polynomial timehierarchy collapses. This result originally came out of a sequence of resultsin the area of interactive proof systems. We will not introduce these proofsystems here (but see Topic 20); instead, we will prove this result along amore or less direct route using the BP. operator and some of its properties.The transition from the class P to the class BPP (cf. Topic 17) amountsto the addition of probability but retains many of the essential features ofthe original class. We want to concentrate on this randomization step andformulate its essential characteristics with the help of an operator that canbe applied to any class C to produce its probabilistic (or randomized) gener-alization.De�nition 18.1. Let C be an arbitrary class of languages. We denote byBP.C the class of all languages A for which there is a language B 2 C, apolynomial p, and constants � 2 (0; 1) and " > 0 such that for all strings x,x 2 A =) Pr[hx; yi 2 B] � �+ "=2 ;x 62 A =) Pr[hx; yi 2 B] � �� "=2 :The probabilities are over all y with jyj = p(jxj), chosen uniformly at random.As in Topic 17, � will be called the threshold value and " the probabilitygap. Furthermore, it is clear that BPP = BP.P. By applying the BP. operatorto other complexity classes we can now form other classes as well, like BP.NP,for example.

154 Topic 18Exercise 18.1. Formulate a condition on the class C so that C � BP.C. CNow that we have generalized the BP. operator, we must rethink underwhat conditions probability ampli�cation { as discussed in Topic 17 { ispossible. This is possible if C possesses a certain closure property.Exercise 18.2.� Formulate a condition on the class C that permits probabilityampli�cation (cf. Topic 17). More precisely, by probability ampli�cation wemean that for every language A 2 BP.C and every polynomial q there shouldbe a language B in C such thatx 2 A =) Pr[hx; yi 2 B] � 1� 2�q(jxj) , andx 62 A =) Pr[hx; yi 2 B] � 2�q(jxj) :Again, y is chosen uniformly at random from among all strings of some suit-able polynomial length (in jxj).Hint: Closure of the class C under polynomial time Turing reductions wouldcertainly be a su�cient condition. But since we are particularly interestedin the class BP.NP and would like to be able to amplify probabilities forthat class, this condition is too strong: NP is probably not closed underTuring reductions since that would imply NP = coNP. So the task here is to�nd a su�cient but somewhat weaker condition than closure under Turingreductions that applies to the class NP (among other classes). CExercise 18.3. Let C be a class such that probability ampli�cation is possiblein the class BP.C. Show that BP.BP.C = BP.C. CBy applying probability ampli�cation we are able to show the followingresult about swapping the order of two operations on a class of languages.Lemma 18.2 (Swapping Lemma). Let Op be an operator on complexityclasses with the following property: If D is an arbitrary class and A is anarbitrary language in Op.D, then there is a polynomial p and a languageB 2 D so that the property x 2 A depends only on the initial segment ofB up to strings of length p(jxj). Furthermore, let C be a class for whichprobability ampli�cation is possible.Then Op.BP.C � BP.Op.C.Exercise 18.4.� Prove Lemma 18.2. CSuch operators with a \polynomial dependency region" include, for ex-ample, co�, P(�), NP(�), and the polynomial quanti�ers 9 and 8 used to de�nethe classes �Pi and �Pi in Topic 16. Since we will make use of the polynomialquanti�ers again here, we repeat their formal de�nitions.De�nition 18.3. For a class C, 9.C denotes the class of all languages A forwhich there is a polynomial p and a language B 2 C such that

Graph Isomorphism 155A = fx j 9y (jyj = p(jxj) ^ hx; yi 2 B)g :The class 8.C is de�ned analogously using universal quanti�cation overstrings of length p(jxj).A few of the obvious properties of these operators include9.P = NP; co.9.C = 8.co.C; co.8.C = 9.co.C :Now that we have studied a few properties of the BP. operator, we wantto become familiar with a natural problem that is in one of the BP. classes.The problem is the graph isomorphism problem, GI : given two undirectedgraphs, determine whether or not they are isomorphic, that is, determinewhether or not there is a permutation of the nodes (node numbers) such thatwhen applied to the �rst graph it results in the second.Example. The following two graphs are isomorphic. One possible isomor-phism is �1 2 3 4 53 4 1 5 2�.
mll ��mm
kk @@@@ ����1 243 5 m mm m������QQQQQQ

m �
�

������������
1324 5It is clear that this problem is in NP. Whether this problem is NP-completeremains an open question, but most likely it is not. (See for example a dis-cussion of this problem in the book by Garey and Johnson.) On the otherhand, no polynomial time algorithm is known for this problem either. So GIis a candidate for a problem that is in NP but neither NP-complete nor in P.(If P 6= NP, it can be proven that such problems exists, but it will probablybe di�cult to prove that any \natural" problem has this property.)Our proof of the following theorem, unlike the original proof, will be theresult of a more or less \direct attack."Theorem 18.4. The complement of the graph isomorphism problem (GI) isin BP.NP.Proof. We begin with a pair of elementary observations about isomorphismof graphs. Let Aut(G) be the set (a group) of isomorphisms of a graph G,that is, the set of all permutations of the nodes that map the graph to itself.For example, �1 2 3 4 52 1 4 3 5� is an automorphism of the �rst graph in the exampleabove.

156 Topic 18Exercise 18.5. If the graph G has exactly n nodes and m = jAut(G)j, howmany di�erent graphs are isomorphic to G? CExercise 18.6.� Given two graphs G1 and G2, each having n nodes, de�nea set X = X(G1; G2) of objects such that the objects in X can be generatednondeterministically from the graphs G1 and G2 in polynomial time andG1 and G2 are isomorphic =) jX j = n!G1 and G2 are not isomorphic =) jX j = 2(n!) CBy forming the cross-product Y = X �X;we can increase the di�erence between these two numbers.G1 and G2 are isomorphic =) jY j = (n!)2G1 and G2 are not isomorphic =) jY j = (2n!)2 = 4 � (n!)2Next we need a class H = Hn of universal hash functions. This class ofhash functions should map elements from a set U (for example, 0-1 strings)with Y � U to the elements of the set M = [4(n!)2] = f0; 1; : : : ; 4(n!)2 � 1g.We require of this class of hash functions, H , the following:� Uniformity. For every y 2 U and a 2 M , if a hash function h is chosen atrandom from H , then Pr[h(y) = a] = 1=jM j :� Pairwise independence. For all y; y0 2 U with y 6= y0 and all z 2 M , if ahash function h is chosen at random from H thenPr[h(y) = z ^ h(y0) = z] = 1=jM j2 :� E�cient computation. The random selection of a hash function h fromH = Hn and the evaluation of h on an input y should be possible inpolynomial time with polynomially many random bits.In what follows we will be interested in (an approximation to) the proba-bility that for a randomly selected h, 0 2 h(Y). Let G1 and G2 be two inputgraphs with n nodes each. If they are isomorphic, then jY j = (n!)2 and inthis case Pr[0 2 h(Y)] = Pr[9y 2 Y : h(y) = 0]� Xy2Y Pr[h(y) = 0]= jY j=jM j = 1=4 :

Graph Isomorphism 157If the graphs are not isomorphic, then jY j = 4 � (n!)2 = jM j. In this casewe can give a lower bound for the probability by using the �rst two terms ofthe inclusion-exclusion principle (cf. Kozen, page 194):Pr[0 2 h(Y)] � Xy2Y Pr[h(y) = 0]� Xfy;zg�Y Pr[h(y) = 0 ^ h(z) = 0]= jY j=jM j ��jY j2 �=jM j2� 1� 1=2 = 1=2 :In summary,G1 and G2 are isomorphic =) Pr[0 2 h(Y)] � 1=4 ;G1 and G2 are not isomorphic =) Pr[0 2 h(Y)] � 1=2 :Since the predicate \0 2 h(Y)" is in NP { guess a y, verify nondeterministi-cally that y 2 Y , check that h(y) = 0 { this representation shows that thecomplement of graph isomorphism is in BP.NP. (The constants are � = 3=8and " = 1=4.)We have yet to discuss the class of hash functions required. We could usethe class of hash functions introduced in Topic 17, but that choice brings withit a number of technical di�culties, since it requires a nondeterministic checkfor primality (which is possible) and because jM j is not necessarily prime.We can de�ne another class of hash functions H from f0; 1ga to f0; 1gbas follows: A hash function h 2 H is described by a boolean a � b matrix(hij). Let x = x1 : : : xa be a 0-1 string of length a. Then the jth bit of h(x)is de�ned to be aMi=1(hij ^ xi); 1 � j � b :Each of the 2ab such hash functions h can be chosen uniformly at randomfrom H , so ab bits are required to specify a hash function.Exercise 18.7.� Show that this class H has the pairwise independence prop-erty, i.e., for all y; y0 2 f0; 1ga with y 6= y0 and for all z 2 f0; 1gb, if h ischosen uniformly at random, then Pr[h(y) = z ^ h(y0) = z] = 2�2b: CA small technical problem is now that size of the range of the functions is apower of 2. This relaxation of the desired number jM j is acceptable if we �rstfurther increase the di�erence in the possible values of jY j (for isomorphic vs.non-isomorphic pairs of graphs). Once this has been done, the proof followseasily from what we have done above. ut� � � � �

158 Topic 18Since the complement of the graph isomorphism problem is in BP.NP,GI 2 coBP.NP = BP.coNP, so it is \almost" in coNP. The following diagramshows the relative position of GI .'
&

$
%

'
&

$
%#" !

'
&

$
%PNP coNPcoBP.NPrppppppppppppppppppppp �GIThe diagram suggests that GI is probably not NP-complete, since the NP-complete problems should be thought of as being at the far left of the diagram,as far away from P as possible.Just as no NP-complete language can be in coNP unless NP = coNP (thatis, PH collapses to �P1), we will show now that if there is an NP-completelanguage in coBP.NP, then PH collapses to �P2 . So if GI is NP-complete,then PH = �P2 .For this we need a method of simulating the BP. operator with sequencesof 9 and 8.Lemma 18.5. Let C be a class of languages that is closed under the operatorPos (see page 285), so that in particular, BP.C permits probability ampli�ca-tion. Then BP.C � 9.8.C and BP.C � 8.9.C.Proof. Let A be in BP.C. We choose a language B in C so that for all xx 2 A =) Pr[hx; yi 2 B] � 1� 2�n ;x 62 A =) Pr[hx; yi 2 B] � 2�n ;where y is chosen uniformly at random from f0; 1gp(jxj) and p is a suitablepolynomial.With the help of the following claim, the proof proceeds easily:Claim. Let E;F � f0; 1gp(n) with jEj; jF j � (1� 2�n)2p(n). Then1. 9u1; : : : ; up(n) 8v [u1 � v 2 E _ � � � _ up(n) � v 2 E], and2. 8u1; : : : ; up(n) 9v [u1 � v 2 F ^ � � � ^ up(n) � v 2 F].All strings ui and v above have length p(n) and � is the bitwise XOR-function.Let G = fy j hx; yi 2 Bg. Then we can apply the claim to either G or G,depending on whether x 2 A or x 62 A, to prove the lemma:

Graph Isomorphism 159x 2 A) (1) with E = G = fy j hx; yi 2 Bg ;x 62 A) (2)) :(1) with F = G = fy j hx; yi 62 Bg ;andx 2 A) (2) with F = G = fy j hx; yi 2 Bg ;x 62 A) (1)) :(2) with E = G = fy j hx; yi 62 Bg :The statements [u1 � v 2 E _ � � � _ up(n) � v 2 E] and [u1 � v 2 E ^ � � � ^up(n)� v 2 E] with E = fy j hx; yi 2 Bg are in Pos(C), and C is closed underPos, so A 2 9.8.C and A 2 8.9.C.This completes the proof of Lemma 18.5, modulo the proof of the claim,which is done in the next two exercises. utExercise 18.8.� Prove part (1) of the claim.Hint: Show the existence of u1; : : : ; up(n) by means of a probabilistic con-struction; that is, show that a random choice of ui's has the desired propertywith non-zero probability, therefore, such ui's must exist. CExercise 18.9.� Prove part (2) of the claim.Hint: Use an indirect proof and a combinatorial counting argument. CSeveral inclusion relations are now immediate consequences of this result.Theorem 18.6. BPP � �P2 \�P2 .Proof. BPP = BP.P � 9.8.P \ 8.9.P = �P2 \�P2 . utTheorem 18.7. BP.NP � �P2 .Proof. BP.NP � 8.9.NP = 8.NP = �P2 : utThe following lemma, along with Theorem 18.4, is the key to the mainresult of this section, namely that GI is \almost surely" not NP-complete.Lemma 18.8. If coNP � BP.NP then PH = �P2 = �P2 = BP.NP.Exercise 18.10. Prove Lemma 18.8. CCorollary 18.9. If GI is NP-complete, then the polynomial hierarchy col-lapses to the second level.Proof. If GI is NP-complete, then GI is coNP-complete. By Theorem 18.4 itfollows that coNP � BP.NP. From this the collapse follows by Lemma 18.8.ut

160 Topic 18ReferencesFor background on probabilistic complexity classes and the BP. operator see� U. Sch�oning: Probabilistic complexity classes and lowness, Journal ofComputer and System Sciences 39 (1989), 84{100.� S. Zachos: Probabilistic quanti�ers, adversaries, and complexity classes:an overview, Proceedings of the 1st Structure in Complexity Theory Con-ference, Lecture Notes in Computer Science 223, Springer, 1986, 383{400.More background on the graph isomorphism problem and its (structural)properties can be found in� C.M. Ho�mann: Group-Theoretic Algorithms and Graph Isomorphism,Springer, 1982.� J. K�obler, U. Sch�oning, J. Tor�an: The Graph Isomorphism Problem: ItsStructural Complexity, Birkh�auser, 1993.The original proof of Theorem 18.4 was very indirect and followed from resultsin� O. Goldreich, S. Micali, A. Wigderson: Proofs that yield nothing but theirvalidity and a methodology of cryptographic protocol design, Proceedingsof the Symposium on Foundations of Computer Science, IEEE, 1986, 174{187.� S. Goldwasser, M. Sipser: Private coins versus public coins in interactiveproof systems, in S. Micali, ed., Advances in Computing Research, Vol. 5:Randomness and Computation, JAI Press, 1989, 73{90.Theorem 18.6 is due to� C. Lautemann: BPP and the polynomial hierarchy, Information Process-ing Letters 14 (1983), 215{217.which includes the technique we used to prove Lemma 18.5, and� M. Sipser: A complexity theoretic approach to randomness, Proceedingsof the 15th Symposium on Theory of Computing, ACM, 1983, 330{335.Theorem 18.7 is from� L. Babai: Trading group theory for randomness, Proceedings of the 17thSymposium on Theory of Computing, ACM, 1985, 421{429.where the result was expressed in terms of Babai's class AM (Arthur-Merlingames), which is a special version of interactive proof systems. AM has beenshown to be equivalent to BP.NP.

Graph Isomorphism 161For Lemma 18.8 and its implications for GI see� R.B. Boppana, J. H�astad, S. Zachos: Does co-NP have short interactiveproofs? Information Processing Letters 25 (1987), 27{32.� U. Sch�oning: Graph isomorphism is in the low hierarchy, Journal of Com-puter and System Sciences 37 (1988), 312{323.� U. Sch�oning: Probabilistic complexity classes and lowness, Journal ofComputer and System Sciences 39 (1989), 84{100.

162 Topic 18

19. The BP-Operator and the Power ofCounting Classes
With the help of the BP. operator, Toda (1989) achieved an astonishingresult: the classes �P and #P are, in a sense, at least as expressive as theentire polynomial hierarchy.The class �P (read \parity-P") consists of all languages L for which there isa nondeterministic polynomial time-bounded machine M (so far this soundsjust like the de�nition of NP) with the following property:x 2 L() the number of accepting computations ofM on inputx is odd.The di�erence between this and the class NP is that the number of acceptingpaths is required to be odd rather than merely non-zero.This class represents a rudimentary form of counting (of the number ofaccepting computations). In the full counting task, which we will discussshortly, one would like to know all of the bits of (the binary representationof) this number; the languages in the class �P are de�ned solely in terms ofthe lowest order bit, i.e., the parity.What can one begin to do with this parity information? Or in other words:How powerful is the class �P? It is clear that P is in �P and that �P is closedunder complement.Exercise 19.1. Why? CBut how does this class compare with the class NP? The only immediateconclusion is that P � NP \ co-NP \ �P. The relationship between NP and�P is unclear. Most likely they are incomparable.

164 Topic 19Sketch: '
&
$
%����P�PNP co-NP

Each positive instance of an NP-problem can have a di�erent number(in general up to exponentially many) \witnesses" for membership in thelanguage. (More concretely, for a satis�able boolean formula F , i.e., F 2 SAT,there can be exponentially many satisfying assignments.) If we now restrictNP to the languages for which each positive instance has at most polynomiallymany witnesses, we obtain the class FewP. That is, a language L is in FewPif there is an NP-machine that accepts the language L and has the additionalproperty that for each input x, there are at most p(jxj) accepting paths,where p is a suitable polynomial.Clearly, P � FewP � NP. It is not clear how much of a restriction it is torequire \few witnesses." We do, however, have the following result:Theorem 19.1. FewP � �P.Exercise 19.2. Prove this theorem.Hint: Let m be the correct number of accepting computations of the FewP-machine. Then Pmi=1 �mi � = 2m � 1 is odd if and only if m > 0. CSketch:
'&$%P'& $%
'
&

$
%

�P'& $%NP ppppppppppppppppFewP6

The Power of Counting Classes 165It is an interesting coincidence that in the examples known to this point,such as the prime number problem or the equivalence problem for tourna-ments (see the book by K�obler, Sch�oning, and Tor�an), the property of be-longing to �P seems to be connected with the property that faster algorithmsare known, with upper bounds something like O(nlog n), than are known forthe NP-complete languages. (For the problems just mentioned it is not clearwhether they are in P.) It is unknown if there is a causal link between �Pand the complexity O(nlog n).In this sense one can interpret �P has a \low" complexity class. In thelast chapter we applied the BP. operator to various complexity classes such asP and NP and interpreted this as merely a certain probabilistic generalizationwhich did not signi�cantly alter the properties of the underlying complexityclasses. The intuition that therefore BP.�P is a \low" class is, however,completely incorrect: Valiant and Vazirani showed that NP � BP.�P, andToda extended this to show that even PH � BP.�P. This will be the mainresult of this chapter.We begin with a few observations about the class �P. This class has com-plete languages (under polynomial-time many-one reductions), for example,�SAT = fF j F is a boolean formula with an odd number of satis-fying assignments g :This follows from Cook's Theorem, which demonstrates the NP-completenessof SAT , and the observation that the Cook formula has the same numberof satisfying assignments as the underlying Turing machine has acceptingcomputations.We say that a language L has AND-functions if there is a polynomial timecomputable function f such thatx1 2 L and . . . and xn 2 L () f(hx1; : : : ; xni) 2 L :Analogously, we can de�ne the notion of an OR-function and a NOT-functionfor a language.Exercise 19.3. Show that SAT has AND-functions and OR-functions. Fur-thermore, SAT has NOT-functions if and only if NP = coNP. CWhat is the situation with �SAT? We will see that �SAT has AND-,OR- and NOT- functions. The AND-function for �P is demonstrated (as forSAT) by the function f(hF1; : : : ; Fni) = F1 ^ � � � ^Fn, where the formulas Fihave disjoint sets of variables. Let ai be the number of satisfying assignmentsfor Fi. Then the number of satisfying assignments for the formula F1^� � �^Fnis precisely Qni=1 ai, which is odd exactly when every ai is odd.

166 Topic 19A NOT-function can be obtained by adding on a \dummy" satisfyingassignment: g(F) = (F ^ y) _ (x1 ^ � � � ^ xn ^ y), where x1; : : : ; xn are thevariables that occur in F and y is a new variable. The formula g(F) clearlyhas exactly one more satisfying assignment than the original formula F .By combining these two formulas and using DeMorgan's laws we imme-diately obtain an OR-function:h(x1; : : : ; xn) = g(f(g(x1); : : : ; g(xn))):Theorem 19.2. NP � BP.�P.Proof. It is su�cient to show that SAT is in a certain sense probabilisticallyreducible to �SAT. More precisely, each input formula F can be transformedby a probabilistic, polynomial-time algorithm into a formula F 0 with theproperty that: F 2 SAT =) Pr[F 0 2 �SAT] > 1p(jF j) ;F 62 SAT =) F 0 62 �SAT ;for some polynomial p.Exercise 19.4. Show that Theorem 19.2 follows from the preceding state-ment.Hint: For the required probability ampli�cation use the fact that the language�SAT has OR-functions. CLet the input formula F have n variables x1; : : : ; xn. Let S be a randomsubset of f1; : : : ; ng, i.e., S is speci�ed by n random bits, the ith bit deter-mining whether i 2 S. We denote by [S] the boolean formulaLi2S xi. Thatis, [S] is a formula that is true precisely when there are an odd number ofi 2 S for which xi = 1. The probabilistic algorithm now transforms F asfollows:INPUT F ;GUESS RANDOMLY k 2 f0; : : : ; n� 1g;GUESS RANDOMLY subsets S1; : : : ; Sk+2 � f1; : : : ; ng;OUTPUT F 0 = F ^ [S1] ^ � � � ^ [Sk+2].Intuitively, with each addition of a subformula of the form [S] to the con-junction the number of satisfying assignments is approximately halved sincefor each assignment b the probability is 1=2 that b([S]) = 0 (and 1=2 thatb([S]) = 1). (Without loss of generality assume that b 6= 00 : : : 0.) Theseevents are, however, not completely independent but only pairwise indepen-

The Power of Counting Classes 167dent. This makes the analysis of the probabilities somewhat more di�cult.But it seems at least plausible that after one of these halving steps there willbe a non-negligible probability of having exactly one satisfying assignmentleft.It is clear that if F is unsatis�able, then F 0 is also unsatis�able andtherefore has an even number (namely, 0) of satisfying assignments, so thatF 0 62 �SAT. Now suppose that F has m � 1 satisfying assignments. Withprobability at least 1=n, k will be chosen so that 2k � m � 2k+1. Nowwe show that with this choice of k, the probability that F 0 has exactly onesatisfying assignment is at least 1=8. Thus the probability that F 0 2 �SATis at least (1=n)(1=8) = 1=8n.Let b be a �xed satisfying assignment of F . Since the subsets Si (i =1; : : : ; k+2) are chosen independently, the probability that b is also a satisfy-ing assignment of F 0 (i.e., that it \survives" each halving) is 1=2k+2. Underthe condition that b survived, the probability of any other satisfying assign-ment b0 for F also survives is also 1=2k+2. Thus the probability that b survivesbut none of the other m� 1 satisfying assignments for F survive is at least12k+2 � (1�Xb0 12k+2) = 12k+2 � (1� m� 12k+2) � 12k+2 � (1� 2k+12k+2) = 1=2k+3 :So the probability that there is such a b that is the only satisfying assign-ment for F 0 is at leastXb 1=2k+3 = m=2k+3 � 2k=2k+3 = 1=8:With that Theorem 19.2 has been proven. utExercise 19.5. Show the following generalization of the preceding theorem:9.�P � BP.�P: CThe preceding proof (and exercise) actually show not only that NP �BP.�P (9.�P � BP.�P, respectively) but that for any polynomial q witha suitable choice of a �P-language, L, the probability that F 2 SAT butF 0 62 L can be made less than 2�q(n).Toda showed that this inclusion can be signi�cantly strengthened:Theorem 19.3. PH � BP.�P.Proof. We show by induction on k that the following claim holds:Claim. For all k � 0, �Pk [�Pk is contained in BP.�P, and the error proba-bility can be made to be less than 2�q(n) for any polynomial q.

168 Topic 19The base case when k = 0 is trivial. Now we show the claim holds fork + 1 under the assumption that the claim holds for k. It su�ces to showthat �Pk+1 is contained in BP.�P, since BP.�P is closed under complement.Let L be an arbitrary language in �Pk+1 = 9.�Pk , let p be the polynomialthat bounds the length of the existentially quanti�ed strings, and let q bean arbitrary polynomial which gives the error rate, 2�q(n), that must beachieved. By the inductive hypothesis, L 2 9.BP.�P, and an error rate of atmost 2�(q(n)+p(n)+1) may be assumed. The BP. operator can be pulled to thefront (see previous chapter) so we get L 2 BP.9.�P with an error rate nowof at most 2�(q(n)+1). The previous exercise implies that L 2 BP.BP.�P, andthat the error rate of the second BP. operator can be chosen to be at most2�(q(n)+1). Now we can combine both BP. operators into one. In the worstcase, the error rates add. So we get that L 2 BP.�P with an error rate of atmost 2�q(n), as was desired. utAs a corollary to this result in combination with techniques from theprevious chapter we get the following immediately:Corollary 19.4. If �P is contained in the polynomial time hierarchy, PH,then PH collapses. utExercise 19.6. Prove Corollary 19.4.Hint: Use the fact that �P has complete languages (like �SAT, for example).CExercise 19.7. Prove that the class BP.�P has complete languages. (Thisseems to be unusual for a BP.-class, although, for example, BP.PSPACE =PSPACE and, of course, PSPACE also has complete languages.)Hint: Use the facts that �P(�P) = �P (which we have already implicitlyshown) and that Theorem 19.3 relativizes, that is, for all classes C, PH(C) �BP.�P(C). From this we can conclude that BP.�P � 8.9.�P � PH(�P) �BP.�P(�P) = BP.�P: C� � � � �Let accM be a function from �� to N that gives for each input x 2 ��the number of accepting computations of M when run with input x. Let #Pbe the set of all functions of the form accM for some NP-machine M .We want to investigate the question of whether one can compute lan-guages in the polynomial time hierarchy using the information given by a#P-function. In fact, we will show thatTheorem 19.5. BP.�P � P(#P).

The Power of Counting Classes 169From this it follows that PH � P(#P). Indeed, for any language A 2 BP.�Pwe will show how to construct an NP-machineM such that from the value ofaccM (x) we can determine whether or not x 2 A by means of a simple arith-metic computation (in polynomial time). Consider the following example:A 2 BP.�P means thatx 2 A =) for \many" strings y there is an odd number of strings zsuch that hx; y; zi 2 B,x 62 A =) for only \a few" strings y is there an odd number of stringsz such that hx; y; zi 2 B,where B is a language in P. For the sake of concreteness let's assume thatthere are 4 potential y-strings and 2 potential z-strings. \Many" could meanin this case 3 or 4, \few" 0 or 1. Then the following tree represents a situationwhere x 2 A. (An `a' in the diagram represents that hx; y; zi 2 B.)
HHHHHHHHH���������

 JJJJJy :z :

x 2 A
AAAA����AAAA����AAAA����AAAA���� a a a a aIn this case there are 3 y's with an odd number of z values.In the next picture there is only one such y, so x 62 A:

HHHHHHHHH���������

 JJJJJy :z :
x 62 A

AAAA����AAAA����AAAA����AAAA���� a a a aaIf we were to ignore the structural di�erence between y and z, however,and view the entire tree as an NP-machine M with input x, then we couldnot learn anything from the number of accepting paths, accM (x), since inboth cases accM (x) = 5.

170 Topic 19Now we want to modify the z-subtrees to z0-subtrees in such a way thatthe following holds:Odd number of z's =) the number of z0 is congruent to 0 (mod 8),Even number of z's =) the number of z0 is congruent to 1 (mod 8).The number 8 was chosen in this case because 8 > 4 and 4 is the number ofpotential y's. In addition it simpli�es matters to choose a power of 2.In the �rst example above we now get:
�����AAAAA �����AAAAA �����AAAAA �����AAAAAHHHHHHHHH���������

 JJJJJy :z0 :

x 2 A
� 0(mod 8) � 0(mod 8) � 0(mod 8) � 1(mod 8)| {z }| {z } | {z } | {z } | {z }� 1 (mod 8)And in the second case:

�����AAAAA �����AAAAA �����AAAAA �����AAAAAHHHHHHHHH���������

 JJJJJy :z0 :
x 62 A

� 0(mod 8) � 1(mod 8) � 1(mod 8) � 1(mod 8)| {z }| {z } | {z } | {z } | {z }� 3 (mod 8)Now the total number g of accepting computations is su�cient to di�er-entiate the two cases: x 2 A if g � 0 or g � 1 (mod 8) and x 62 A, if g � 3or g � 4 (mod 8). In general: x 2 A if and only if g < 2p(jxj)=2 (mod 2p(jxj)),

The Power of Counting Classes 171where p is a large enough polynomial and g is the total number of acceptingcomputations. For an appropriate machine N , g =accN (x). So it turns outthat the determination of whether x 2 A depends only on a single bit of thebinary representation of accN (x), a #P-function. (Note: the proof of inclu-sion BP.�P � P(#P) does not depend on the fact that the BP. operator hasa \gap" between the accepting and rejecting probabilities or that this gapcan be ampli�ed; the inclusion would also be true if we had de�ned the BP.operator without this gap { see the previous chapter.)Our goal has now been reached, provided we can transform an arbitraryNP-machineM into an NP-machineM 0 such that for some (su�ciently large)polynomial p we have:accM (x) odd =) accM 0(x) � 0 (mod 2p(jxj)) ;accM (x) even =) accM 0(x) � 1 (mod 2p(jxj)) :The polynomial p depends on the number of y in the preceding example.(2p(n) should be larger than the number of potential y, i.e., p(n) must belarger than the maximum possible length of such a y.) In order to ful�llthis property, it su�ces to give a general construction that works for everypolynomial p.For this consider the following \magic formula" (let p = p(jxj)):(accM (x)p + 1)p :Now we run through each case (accM (x) even or odd):Case 1. accM (x) even.(accM(x) p + 1) p| {z }� 0(mod 2)| {z }� 0(mod 2p)| {z }� 1(mod 2p)| {z }� 1(mod 2p)

172 Topic 19Case 2. accM (x) odd.(accM(x) p + 1) p| {z }� 1(mod 2)| {z }� 1(mod 2)| {z }� 0(mod 2)| {z }� 0(mod 2p)In each case the chain of implications is understood to go from top tobottom.Exercise 19.8. In both cases we used the implicationsa � 0 (mod b) =) ap � 0 (mod bp);a � 1 (mod b) =) ap � 1 (mod b):Prove them. CExercise 19.9. Let M be an NP-machine. Show that the functionf(x) = (accM (x)p(jxj) + 1)p(jxj)is in #P. CThis completes the proof that PH � BP.�P � P(#P). utThe diagram below summarizes the known inclusion relationships. Thelanguage class PP, which appears in the diagram, is closely related to thefunction class #P. Let M be an NP-machine and p be a polynomial suchthat every computation on every input of length n runs in time p(n). Thenthere are 2p(n) di�erent possible computations on each input of length n. Alanguage A is in PP if there is such a machineM and polynomial p for whichx 2 A () accM (x) > 2p(jxj)=2, i.e., at least half of the computations oninput x are accepting. It is easy to see that NP � PP, P(#P) = P(PP), andPP is closed under complementation.

The Power of Counting Classes 173

��
��
�
������l

lllll@@@@@@�
�����

�PSPACEP(#P) = P(PP)�PP BP.�PPH � �PNP PReferencesThe class �P was introduced by C.H. Papadimitriou and S. Zachos:� Two remarks on the power of counting, Proceedings of the 6th GI Con-ference in Theoretical Computer Science, Lecture Notes in ComputerScience 145, Springer, 1983, 269{276.There �P(�P) = �P is proven.The class FewP originated with� E. Allender: Invertible Functions, PhD thesis, Georgia Tech., 1985.The inclusion FewP � �P appears in� J. Cai, L.A. Hemachandra: On the power of parity polynomial time, Pro-ceedings of the Symposium on Theoretical Aspects of Computer Science,Lecture Notes in Computer Science 349, Springer, 1989, 229{240.The BP. operator was �rst de�ned in� U. Sch�oning: Probabilistic complexity classes and lowness, Journal ofComputer and Systems Sciences 39 (1989), 84{100.The result NP � BP.�P (formulated di�erently) is from

174 Topic 19� L.G. Valiant, V.V. Vazirani: NP is as easy as detecting unique solutions,Theoretical Computer Science 47 (1986), 85{93.The extension of this inclusion to PH and the inclusion PH � P(#P) wasachieved by� S. Toda: PP is as hard as the polynomial-time hierarchy, SIAM Journalon Computing 20 (1991), 865{877.Our approximations of the probabilities in the proof of \NP � BP.�P" comefrom� C.H. Papadimitriou: Computational Complexity, Addison-Wesley, 1994,page 450.Our \magic formula" is a simpli�ed version of the formulas found in� R. Beigel, J. Tarui: On ACC, Proceedings of the Symposium on Founda-tions of Computer Science, IEEE 1991, 783{792.� J. K�obler, S. Toda: On the power of generalized MOD-classes, Mathe-matical Systems Theory 29 (1994), 33{46.

20. Interactive Proofs and Zero Knowledge
In 1986 Goldwasser, Micali, and Racko� introduced the notion of an inter-active proof system. Using these systems, probabilistic generalizations ofthe complexity class NP can be de�ned. A zero knowledge protocol is ableto provide convincing evidence that a proof of a statement exists withoutdisclosing any information about the proof itself.In Topic 6, among other things, the relationship between e�cient proofs andthe class NP was discussed. As we noted there, the class NP can be viewed asthe set of all languages that have polynomially long proofs in an appropriateproof calculus.Exercise 20.1. Sketch a proof of this characterization of NP. (The de�nitionof a proof calculus is intentionally omitted; �x it appropriately for the proof.)CHere we want to consider such proofs more generally as a communicationproblem between a prover who knows the proof (the prover) and a veri�er whodoes not know the proof but is supposed to be convinced of its correctness(or perhaps only of its existence).1 In our previous considerations, i.e., in thede�nition of the class NP given above, the communication has been entirelyone-sided: the prover gives the veri�er a complete proof, which the veri�erthen checks in polynomial time.We want to recast this now as a communication problem between twoTuring machines { prover and veri�er. The veri�er will be a polynomial time-bounded Turing machine. Later we will also consider probabilistic veri�ers(cf. Topic 17). The prover, on the other hand, will have no complexity re-strictions, which in some sense corresponds to the existential quanti�er in thede�nition of NP. These two machines communicate over a common communi-cation channel (a Turing machine tape), and both machines also have access1 This idea follows the manner in which proofs were often written down in antiq-uity, namely in the form of a dialog between someone carrying out a proof andanother party who doubts its validity. In more modern form, such \dialog-proofs"can be found, for example in� P. Lorenzen: Metamathematik, Bibl. Inst., 1962.

176 Topic 20to the input, which in some sense represents the statement to be proven. Fur-thermore, each machine has a \private" work tape for internal computations.
Prover Veri�er���	 @@@R���	����@@@R@@@I?6 ?6

inputtapecommunicationtape work tapework tapeThe computation proceeds in rounds. In each round, only one of the par-ticipants is active. A round begins with the reading of the information onthe communication tape (or on the input tape) and ends { perhaps aftersome private computations { with writing at most polynomially much newinformation on the communication tape. The number of rounds is limitedto be polynomial in the length of the input. Since both participants can inprinciple keep a complete log of all communication on their work tapes, thenewly computed information at each round can be considered a function ofthe input and all previously communicated information. In the case of theveri�er, this function must be computable in polynomial time. The (prelimi-nary) de�nition of the language A that is represented by such an interactiveproof system is the following: There must be a veri�er-algorithm V so that forany x 2 A, there is a prover-strategy so that the veri�er eventually accepts.If x 62 A, then the veri�er rejects, regardless of what strategy the prover uses.Note that we have made no restrictions on the complexity of the prover.Exercise 20.2. Show that using this apparently more general interactivecommunication model, nothing more can be computed than the class NP. CThe situation changes drastically (at least potentially) if the Turing ma-chines (in particular the veri�er) are allowed to work probabilistically. In thiscase, the participants can make the execution of their computations dependon the result of a random experiment. Furthermore, we relax the requirementsfor x 2 A (and x 62 A) somewhat. Our �nal de�nition goes as follows:De�nition 20.1. A language A is in the class IP if there is a probabilistic,polynomial time-bounded Turing machine V (the veri�er) such that for all x:x 2 A) 9Prover P : Pr[(P; V)(x) = 1] > 2=3;x 62 A) 8Prover P : Pr[(P; V)(x) = 1] < 1=3:

Interactive Proofs and Zero Knowledge 177In the de�nition above, \(P; V)(x) = 1" means that the result for a givenprover P and veri�er V is that x is accepted. This de�nition was introducedby S. Goldwasser, S. Micali, and C. Racko�.The constants 2=3 and 1=3 are somewhat arbitrary. Because of the pos-sibility of \probability ampli�cation" in this model (cf. Topic 17), the exactvalues of the constants do not matter as long as the �rst one has the form1=2 + " and the second one the form 1=2 � " for some constant " > 0. Infact, one can choose the �rst \constant" to be 1� 2�jxj and the second to be2�jxj.2It is clear from the previous discussion that all NP-languages have interac-tive proofs. In fact, they have trivial ones in which all of the communicationis from the prover to the veri�er. So NP � IP. Since the veri�er can computethe languages in BPP without any communication from the prover, it is alsoclear that BPP � IP.Exercise 20.3.� Show that IP � PSPACE. CExercise 20.4.� A language A is provable by an oracle if there is a polynomialtime-bounded, probabilistic Turing machine M such that for all xx 2 A) 9 oracle B : Pr[MB(x) = 1] > 2=3;x 62 A) 8 oracle B : Pr[MB(x) = 1] < 1=3:Show that A 2 IP implies that A is provable by an oracle. Give an argumentwhy the reverse direction might not be true. CSo just how large is the class IP? It is contained in PSPACE and containsNP. How much more of PSPACE is in IP? A well-known example of a problemin IP that is not known to be in NP is the complement of graph isomorphism,GI (cf. Topic 17): given two graphs G1 and G2 prove (interactively) thatthey are not isomorphic. One interactive protocol that achieves this is thefollowing:Prover communication Veri�erRandomly guess i 2f1; 2g and a permuta-tion � of f1; : : : ; ng,where n is the numberof nodes in the graphsG1 and G2. Computethe graph H = �(Gi). � H �Determine j 2 f1; 2g,so that Gj and H areisomorphic. �! j �! Accept if i = j.2 In fact, even more is true. It can be shown that the �rst constant can be chosento be 1; see the 1987 paper by Goldreich, Micali, and Sipser.

178 Topic 20Now if G1 and G2 are not isomorphic, then a suitable prover algorithmcan always answer with the correct j { remember the prover is not computa-tionally limited, and so is able to �nd any isomorphisms that exist { so theveri�er will always accept. That is,G1 not isomorphic to G2) 9Prover P : Pr[(P; V)(G1; G2) = 1] = 1 :On the other hand, if the two graphs are isomorphic, then the proverhas at most a 50-50 chance of selecting the \correct" value i = j. SoG1 isomorphic to G2) 8Prover P : Pr[(P; V)(G1; G2) = 1] � 1=2 :Exercise 20.5. For which provers is the probability exactly 1=2? What is theprobability in other cases? CThe de�nition of IP has not yet been satis�ed, since the probability of erroris 1=2, which is greater than 1=3.Exercise 20.6. Modify the protocol above slightly (without changing the\communication protocol") so that probabilities 1 and 1=2 above are trans-formed to 1=2 + " and 1=2� ", for some " > 0. CExercise 20.7. How can the protocol be modi�ed so that instead of theprobabilities 1 and 1=2 we get the probabilities 1 and 2�k? CSo GI 2 IP. It is important to note that the protocol described above usesonly a constant number of rounds, namely 2. So GI 2 IP(2), where IP(k) isthe subset of IP where only k rounds are allowed. If we really make use of thepolynomially many rounds available, then we arrive at IP = PSPACE. Thiswas �rst shown by A. Shamir and will be the subject of Topic 21.It appears at �rst glance to be signi�cant that the veri�er makes his ran-dom choices (i and �) on the private work tape, \out of sight" of the prover.S. Goldwasser and M. Sipser showed (1986), however, that this secrecy isnot necessary. Every IP-protocol, like the one above, can be transformed intoone in which the veri�er does nothing but generate random numbers andcommunicate these directly to the prover { without subsequent internal com-putation. This kind of protocol was introduced independently by L. Babai,who called it an Arthur-Merlin game because the prover plays the role of thewizard Merlin, and the veri�er the role of King Arthur.Example. The method used in Topic 18 to demonstrate that GI 2 BP.NPcan be recast as an IP-protocol with \public coins" as follows:

Interactive Proofs and Zero Knowledge 179Prover communication Veri�erRandomly guess ahash function h 2 H. � h �Determine a y 2 Ywith h(y) = 0. Let b bea \proof" of \y 2 Y ". �! y; b �! Accept if b is correctand h(y) = 0.For a discussion of the terminology and probability approximations in thisexample, see the description given in Topic 18. In fact, it is the case thatBP.NP = IP(2). � � � � �Now we come to another interesting concept, also introduced by Gold-wasser, Micali and Racko�, namely zero-knowledge. This means that an IP-proof can be carried out in such a way that the veri�er does not obtainany information about the proof itself, but is nevertheless convinced of theexistence of such a proof, since the IP-protocol is still correct.The most famous example of this was given in a paper by O. Goldreich,S. Micali, A. Wigderson and is the graph isomorphism problem, GI . In orderto convince the veri�er that two graphs are isomorphic, the simplest thingthe prover could do would be to give the veri�er an isomorphism (coded inpolynomially many bits), which the veri�er could then easily check. But thenthe whole secret would be revealed; the veri�er could use this information totell a third party, etc. In certain contexts { cryptologists rack their brainsover such contexts { it may well be that it is not desirable that the proof berevealed, but that the veri�er must, nevertheless, be convinced that the proverknows a proof (a graph isomorphism, in our example). A \zero-knowledgeproof of knowledge" is actually able to satisfy these apparently paradoxicalrequirements.Consider the following protocol for GI . Contrary to our previous exam-ple, in this protocol it is the prover who begins, and the prover also usesrandomness.

180 Topic 20Prover communication Veri�erRandomly guess i 2f1; 2g and a permuta-tion � of f1; : : : ; ng,where n is the numberof nodes in the graphsG1 and G2. Computethe graph H = �(Gi). �! H �! Randomly select a j 2f1; 2g. � j �Determine � so that�(Gj) = H. �! � �! Accept if �(Gj) = H.Exercise 20.8. Show that this is an IP-protocol for GI . CThis protocol is unusual, however, in that it does not reveal anythingabout the isomorphism (if one exists) between the graphs G1 and G2. Theprotocol ful�lls our de�nition of zero-knowledge: The information that istransmitted on the communication channel (in this caseH , j, and �) contains(statistically) no new information for the veri�er. The veri�er would be ablewith his computational resources to generate exactly the same probabilitydistribution for the triples (H; j; �) as would occur in a typical realizationof the protocol. Therefore, the veri�er can learn absolutely nothing new byviewing the communication log.De�nition 20.2. (Goldwasser, Micali, Racko�) Suppose A 2 IP via aprover-veri�er pair (P; V). Then this protocol is a zero-knowledge protocolif there is a probabilistic Turing machine M such that M on any input xruns in polynomial time and if x 2 A, then M outputs a tuple (y1; : : : ; yk)so that the distribution of such tuples is exactly the distribution that can beobserved on the communication channel of P and V on input x.3Exercise 20.9.� Show that the protocol given above for GI is a zero-knowledge protocol. CExercise 20.10. Some authors have criticized that since the prover in the def-inition of IP has unbounded resources, these types of IP-proofs { of which thezero-knowledge ones are most interesting { are not practically implementable.But let's modify the scenario slightly: Now the prover, like the veri�er,will also be a probabilistic, polynomial time-bounded Turing machine, but at3 More precisely, what we have de�ned here is perfect zero-knowledge with �xedveri�er, in contrast to other de�nitions of zero-knowledge that exist in the liter-ature. Under weaker de�nitions, one can show that all NP-languages have zero-knowledge IP-proofs, but this does not appear to be the case for our de�nition.For more on this see the article by Brassard.

Interactive Proofs and Zero Knowledge 181the start of the protocol, the prover has some additional information, namely,the \proof" is written on its work tape. (In our example, this would be anisomorphism between the graphs G1 and G2, if one exists.) Show that theprotocol described above can be used in this situation so that the prover can(in polynomial time) convince the veri�er of the existence of an isomorphismwithout revealing the isomorphism. That is, zero-knowledge proofs are stillpossible with such modi�cations to the model. CReferencesZero-knowledge proofs are an important topic in cryptology; they can beused, for example, to provide secure identi�cation or authorization in thepresence of eavesdropping. See� A. Fiat, A. Shamir: How to prove yourself: practical solutions to identi�-cation and signature problems. CRYPTO 86. Lecture Notes in ComputerScience 263, Springer, 1987, 186{194.Surveys of interactive proofs systems and zero-knowledge can be found in� J.L. Balc�azar, J. Diaz, J. Gabarr�o: Structural Complexity II, Springer,1990, Chapter 11.� D.P. Bovet, P. Crescenzi: Introduction to the Theory of Complexity,Prentice-Hall, 1994, Chapter 10.� J. Feigenbaum: Overview of interactive proof systems and zero knowl-edge, Chapter 8 in G.J. Simmons, ed., Contemporary Cryptography, TheScience of Information Integrity. IEEE, 1992.� O. Goldreich: Randomness, interactive proofs, and zero-knowledge. inR. Herken, ed., The Universal Turing Machine: A Half-Century Survey,Oxford University Press 1988, 377{406.� S. Goldwasser: Interactive proof systems, in J. Hartmanis, ed., Compu-tational Complexity Theory, Proceedings of the Symposium in AppliedMathematics, Vol. 38, AMS, 1989, 108{128.� J. K�obler, U. Sch�oning, J. Tor�an: The Graph Isomorphism Problem: ItsStructural Complexity, Birkh�auser, 1993, Chapter 2.� C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994,Section 19.2.Primary sources used in writing this chapter include� Babai: Trading group theory for randomness, Proceedings of the 17thSymposium on Theory of Computing, ACM, 1985, 421{429.

182 Topic 20� G. Brassard: Sorting out zero knowledge. Advances in Cryptology, 1989,Lecture Notes in Computer Science 434, Springer, 1989.� O. Goldreich, S. Micali, M. Sipser: Interactive proof systems: proversthat never fail and random selection. Proceedings of the Symposium onFoundations of Computer Science, IEEE, 1987, 449{461.� O. Goldreich, S. Micali, A. Wigderson: Proofs that yield nothing buttheir validity or all languages in NP have zero-knowledge proof systems.Journal of the ACM 38 (1991) 691{729.� S. Goldwasser, S. Micali, C. Racko�: The knowledge complexity of inter-active proof systems. SIAM Journal on Computing 18 (1989), 186{208.� S. Goldwasser, M. Sipser: Private coins versus public coins in interactiveproof systems, Proceedings of the 18th Symposium on Theory of Com-puting, ACM, 1986, 59{68.� S. Micali, ed., Randomness and Computation, Vol. 5 of Advances in Com-puting Research, JAI Press, 1989.

21. IP = PSPACE
We present the surprising result of A. Shamir that the classes IP andPSPACE are the same.For a long time it was unclear how encompassing the class IP really is. Theconjecture was that this class represented only a \small" generalization of theclass NP (something like BP.NP, cf. Topic 18). It was not even clear that theclass coNP was contained in IP. In fact, there were oracle results that spokeagainst this (cf. Topic 22).Triggered by the observation of N. Nisan that by means of a certainarithmetization technique and the use of Toda's results (cf. Topic 19), onecould show that PH � IP (which implies, of course, coNP � IP as well), thereensued a race toward the potential goal of IP = PSPACE. (Remember thatin Topic 20 we saw that IP � PSPACE.) This race took place by e-mail inDecember, 1989, among certain \insiders" (see the article by L. Babai). Thisrace was eventually won by A. Shamir. We want to work through the proofof this result in this chapter.The strategy is to give an interactive proof protocol for QBF, a PSPACE-complete problem, thus proving that QBF 2 IP. From this it follows thatPSPACE � IP, and, therefore, that IP = PSPACE. The languageQBF consistsof all valid quanti�ed boolean formulas with no free variables. Quanti�cationis over boolean variables (f0; 1g or fFALSE, TRUEg).Example. The following formula is in QBF:8x8y �x _ :y _ 9z ((x ^ z) _ (y ^ z))� :It will be important in what follows that we only allow formulas in whichthe negations are only applied to variables. Let QBF 0 � QBF be the set ofall such formulas that have no free variables and are valid.Exercise 21.1. Show that QBF �Pm QBF0, so it is su�cient to prove thatQBF 0 2 IP . CThe goal of the desired interactive proof protocol is to get the prover toconvince the veri�er that the input formula F is valid; and if F is not valid,then the veri�er should reject with high probability.

184 Topic 21The trick is to interpret the formulas arithmetically. We do this in thefollowing way: We assume that the variables can take on integer values.An AND-operation will be interpreted as multiplication (�), and an OR-operation as addition (+). If the variable xi is negated, we interpret this as1� xi.It remains to show how the quanti�cation can be arithmetized. For aformula of the form 8x, every free occurrence of x in F is replaced once with0 and once with 1, and each of the resulting formulas is then arithmetized.Let a0; a1 2 Z be the resulting values. The value of 8xF is then a0 � a1.For 9xF we use a0 + a1 instead. Let bool(F) denote the boolean value of aformula F and let arith(F) denote its arithmetic value.Example. We can compute the value of the formula in the previous exampleas follows:8x8y �x _ :y _ 9z ((x ^ z) _ (y ^ z))�� Yx=0;1 Yy=0;1 x+ (1� y) + Xz=0;1((x � z) + (y � z))!= Yx=0;1 Yy=0;1 (x+ (1� y) + [(x � 0) + (y � 0)) + ((x � 1) + (y � 1)])= Yx=0;1 �x+ (1� 0) + [x+ 0]� � �x+ (1� 1) + [x+ 1]�= Yx=0;1(2x+ 1) � (2x+ 1) = (1 � 1) � (3 � 3) = 9 :Exercise 21.2. Show thatbool(F) = TRUE =) arith(F) > 0 ;bool(F) = FALSE =) arith(F) = 0 :Hint: Use structural induction on the formula F . CInstead of convincing the veri�er that the boolean value of a formula isTRUE, the prover will instead �rst communicate to the veri�er a value a 2 Zand then try to convince the veri�er that the arithmetic value is exactly a.It is precisely this more di�cult task, which demands more information fromthe prover, that makes a correct interactive protocol for QBF0 possible.Now we come to our �rst technical problem: The arithmetic value a issupposed to be communicated. The prover, with unbounded resources, canclearly compute this number from the formula F , a task that (by the previousexercise) is at least as di�cult as QBF. But the value of a could be so largethat the binary representation of a doesn't have polynomial length!

IP = PSPACE 185Exercise 21.3. Show that for the following formulaF = 8x1 : : :8xm 9y 9z (y _ z) ;arith(F) = 42m . CExercise 21.4. Show that if the length of a formula F (as a string) is n, thenarith(F) � 22n . CSo we must �nd a way to reduce the arithmetic value of the formulas.We can do this by computing modulo some number k of size 2O(n). Then wecan represent a mod k using only O(n) bits. But we must make sure thatthe properties \a > 0" for valid formulas and \a = 0" for invalid formulascontinue to hold when this modular arithmetic is used.It is the case, however, that for all a with 0 < a < 22n , there is a primenumber k in the interval [2n; 23n] such that a 6� 0 (mod k).Exercise 21.5.� Show this. You may use without proof the fact that for everym there are at least pm prime numbers � m, i.e. �(m) � pm.Hint: Chinese Remainder Theorem. CIn Topic 9 we gave lower bounds for �(n), but these were good only forin�nitely many n. The Prime Number Theorem actually says more, namelythat �(n) � n= lnn. But for the exercise above, the following weaker versionwould su�ce:Exercise 21.6.� Show that �(n) � pn. COur desired protocol for QBF0 2 IP begins with the following informationbeing communicated from the prover to the veri�er in the �rst round:Prover Communication Veri�erCompute n = jF j, com-pute a = arith(F) anddetermine a prime num-ber k 2 [2n; 23n] (if pos-sible) with a 6� 0 (modk). Let â = a mod k.Find a \proof" b for theprimality of k. ! â; k; b! Verify that â > 0, thatk 2 [2n; 23n], and that bis a correct proof that kis a prime....In the remainder of the protocol, the prover has the task of convincing theveri�er that the arithmetic value of F (modulo k) really is â.At this point it is not yet clear why the prover must convince the veri�erthat k is a prime number, since even if k is composite, we can conclude from

186 Topic 21â > 0 that a > 0. So far, the only place primality has played any role hasbeen in the context of the Chinese Remainder Theorem above. But in whatfollows it will be important for the veri�er to know that f0; : : : ; k � 1g =GF(k) is a �eld. Otherwise, the prover would be able to \cheat," as we willsoon see.Nor have we discussed what b, the proof of primality, is like. It is in factpossible to certify the primality of a number via a polynomially long (non-interactive) proof, that is, PRIMES 2 NP. This fact was originally due toV. Pratt, but we will not pursue the proof further here. (See the referencesat the end of the chapter for more information.)Another possibility is to have the veri�er choose a prime number (from asomewhat larger interval) at random in the �rst round. (Methods for selectinga random prime can be found in the book by Cormen, Leiserson, and Rivest.)If the veri�er selects such a prime p at random, then with high probability,a 6� 0 (mod p).Exercise 21.7.� In this alternative, how large must the interval from whichthe prime number k is chosen be in order that for every a 2 [0; 22n], theprobability is at least 1� 2�n that a 6� 0 (mod k)? C� � � � �Now we come to the heart of the protocol, verifying that arith(F) modk = â, where F is (for the moment) the input formula. This will requiremultiple rounds. Each round will be associated with some claim of the formform \arith(F) � â mod k," where initially F is the input formula and âis the value communicated by the veri�er in the �rst round. In subsequentrounds, F will be some (shorter) formula that occurs as a subformula orinstantiation of a formula F̂ from a previous round, and â will be the valuethat the prover claimed was arith(F̂) mod k.If, for example, F has the form F = (F1 ^ F2), then in the next roundthe prover must give two numbers a1 and a2 along with proofs that a1 is thearithmetic value of F1 (modulo k) and that a2 is the arithmetic value of F2(modulo k). (The veri�er will check to be sure that a0 � a1 � â mod k.) Theprocedure for F = (F1 _ F2) is analogous, except that the veri�er will checkthat â � a1 + a2 (mod k).It becomes more interesting when F has the form F = 8xG. The variablex occurs freely in G, so the arithmetic value of G is not a number but afunction. In fact, it is a polynomial, since the only operations are +, �, and�. The prover will now be required to tell the veri�er the coe�cients of thispolynomial, which we will call pG, since this task is too di�cult for the veri�er.The veri�er then checks that pG(0) � pG(1) � â (mod k), selects a randomnumber z 2 f0; : : : ; k� 1g = GF(k), and communicates this number z to theprover. The prover is now expected to provide a proof that the arithmeticvalue of G (with the number z substituted for the variable x) is precisely

IP = PSPACE 187pG(z). In the case of a formula of the form F = 9xG everything proceedsanalogously, except that the veri�er checks that pG(0) + pG(1) � â (mod k).Example. If F = 8x8y �x _ :y _ 9z ((x ^ z) _ (y ^ z))�, as in our previousexamples, thenpG(x) = Yy=0;1 x+ (1� y) + Xz=0;1((x � z) + (y � z))!= (2x+ 1) � (2x+ 1) = 4x2 + 4x+ 1 :Note that this gives more information than merely giving the values pG(0) = 1and pG(1) = 9.So at this point the protocol is doing the following: In order to provethat the value of F is â, the prover must give the veri�er the polynomialpG. Now the task is to verify that the polynomial pG is correct. We will seebelow that these polynomials have very low degree (in comparison to the sizeof the underlying �eld GF(k)). For this reason, on substitution of a randomvalue, it is very likely that if the prover tried to cheat by giving an incorrectpolynomial (which for the moment will not be detected by the veri�er) thenin the next round the prover will be forced to once again give an incorrectpolynomial { if he ever hopes to cause the the veri�er to accept { but now fora smaller formula G(z).1 In the end, the prover's deception will (with veryhigh probability) be found out.Exercise 21.8. Let d < k) be the degree of the polynomials p and p0.Suppose the prover tries (or is forced to try because of previous rounds) toshow that p0 is the polynomial associated with G(z) when in fact it is reallyp 6= p0. What is the probability that given a random choice of z (as describedabove), p(z) 6= p0(z)? CAt the end of the protocol we arrive at the \innermost" parts of F , thevariables, which in the previous rounds have been replaced by random num-bers. Now the veri�er need only check that these random numbers agree withthe arithmetic value.This concludes a description of the protocol by which the prover canconvince the veri�er that the arithmetic value of a formula is exactly somesupposed value. Some comments about its correctness have already beenmade. What is still missing is a rigorous approximation for the probability ofcorrectness and an argument that the degree of the polynomials is small. Aswe saw in the previous exercise, the degree of the polynomial plays a role inthe probability arguments. Furthermore, the prover must communicate thepolynomials. The coe�cients themselves come from GF(n) and so requireonly O(n) bits since k � 23n, so what we need is a polynomial bound on the1 Technically, G(z) is no longer a formula, since an integer has been substitutedfor one of the variables.

188 Topic 21number of coe�cients. In order for this to be possible, the degree should beat most polynomial in n.Without taking further precautions, the degree of the polynomial pG couldbe exponentially large. It is the universal quanti�ers that have the possi-bility of drastically increasing the degree. If, for example, G has the form8y1 : : :8ymH(x; y1; : : : ; ym) and H is a quanti�er-free formula that has (dueto nested ANDs and ORs) degree c with respect to x, then the polynomialpG has degree c2m. In order to maintain a low degree for the polynomials as-sociated with a subformula G of F (with some variables already instantiatedwith random numbers), it is important that (already in F) the number ofuniversal quanti�ers between an occurrence of a variable and the quanti�erthat binds it be small. In what follows, we will only allow one such interveninguniversal quanti�er.De�nition 21.1. A quanti�ed boolean formula without free variables is saidto be simple if for every variable that occurs, the number of universal quanti-�ers that lie between any occurrence of the variable and its binding quanti�eris at most 1.We denote by QBF 00 the set of simple formulas in QBF 0.Exercise 21.9. Show that the degree of any polynomial that comes from asimple formula F of length n is at most 2n. CExercise 21.10.� Show that QBF (or QBF 0) is polynomial-time reducibleto QBF00. Therefore, it su�ces for our interactive protocol to consider onlysimple formulas.Hint: For every occurrence of the situation : : : Qx : : :8y : : : x : : :, introduce anew variable (to be a place holder for x). CFor the correctness of \QBF00 2 IP," we still need to give a bound onthe probability of error in the protocol. If the input formula F is valid, thenthe prover can satisfy all of the veri�er's demands and produce the correctarithmetic value and all the required polynomials. So in this case, the veri�erwill accept with probability 1.If, on the other hand, F is not valid, then there is only a very small chancethat the veri�er incorrectly accepts. This can only happen if in some roundthe veri�er randomly chooses a number z such that the incorrect polynomialpreviously given by the prover and the correct polynomial pG have the samevalue on z. By the earlier exercises, in any given round this can only happenwith probability at most 2n=2n. Since there are at most n rounds, we get thefollowing approximation for the probability that the prover can prosper bycheating: Pr[error] � 2n2=2n ! 0 (n!1) :So the de�nition of IP is satis�ed. It follows that IP = PSPACE , as was tobe shown. ut

IP = PSPACE 189Exercise 21.11. Use Pr[error] = 1 � Pr[no error] to get a better approxi-mation. CFinally, we note that in this protocol the numbers randomly chosen bythe veri�er are given directly to the prover. So this protocol is, in fact, of\Arthur-Merlin" type (cf. Topic 20).ReferencesThe tale of the e-mail race toward IP = PSPACE is told in� Babai: E-mail and the unexpected power of interaction, Proceedings ofthe 5th Structure in Complexity Theory Conference, IEEE, 1990, 30{44.The original proof appeared in� A. Shamir: IP=PSPACE, Journal of the ACM 39 (1992) 869{877.Proofs can also be found in the following books:� C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.� D.P Bovet, P. Crescenzi: Introduction to the Theory of Complexity,Prentice-Hall, 1988.� C. Lund: The Power of Interaction, MIT Press, 1992.The fact that PRIMES 2 NP is from� V. Pratt: Every prime has a succinct certi�cate, SIAM Journal of Com-puting (1975), 214{220.See also� D. Knuth: The Art of Computer Programming, Vol. 2: Semi-NumericalAlgorithms, Addison-Wesley, 1981, page 395, Exercise 17.� E. Kranakis: Primality and Cryptography, John Wiley & Sons, 1986, Sec-tion 2.6.For an explanation of how to select prime numbers at random see� T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to Algorithms,MIT Press, McGraw-Hill, 1990, Chapter 33.

190 Topic 21

22. P 6= NP with probability 1
There are \worlds" in which P = NP and others in which P 6= NP. Fur-thermore, if a \world" is chosen at random, the probability is 1 that it willbe a world in which P 6= NP.If one is not familiar with the material that we are about to present, thenone would probably assume without further thought that if one could showthat P 6= NP, then from this fact (and a potential proof of this fact), itwould immediately follow that for any oracle PA 6= NPA, since although theproblem is \shifted" by the oracle, its fundamental structure seems to remainthe same. Similarly, if we assumed the (unlikely) case that P = NP, again wewould expect that by a similar argument one could show that that PA = NPAfor all oracles.Such a \relativization principle" does seem to hold in recursion theory.Every known theorem can be \relativized" by the addition of an oracle mech-anism and is in fact still true with any choice of oracle. But in complexitytheory things are di�erent: T. Baker, J. Gill and R. Solovay showed that thereare languages A and B such thatPA 6= NPA and PB = NPB :Exercise 22.1. Show that any PSPACE-complete language can be used forB. CNow we want to show that for \almost all" choices of oracle, P 6= NP.More precisely, what we mean is this: If we generate the oracle languageA according to a random procedure in which for every string x 2 f0; 1g�(independently of all other strings) is equally likely to be in or out of A (i.e.,8xPr[x 2 A] = 1=2) thenPr[PA = NPA] = 0 , i.e., Pr[PA 6= NPA] = 1:From this, of course, it follows that there exists an oracle, relative to whichthe classes P and NP are di�erent.

192 Topic 22This result seems especially attractive: On a scale from 0 to 1, the needlepoints all the way to the right. Could this be an indication of how the un-relativized question is answered, i.e., that P 6= NP, unrelativized? This wayof thinking, namely that if a statement holds with probability 1 relative to arandom oracle then one can conclude (or better conjecture) that the unrela-tivized statement also holds, is referred to as the Random Oracle Hypothesis.It can be shown that in statements of this type (i.e., comparisons of com-plexity classes) the probability will always be either 0 or 1 (Kolmogorov's 0-1Law). So the \needle" can only point all the way to the left or right of thescale. This is very suggestive. Nevertheless, the Random Oracle Hypothesishas been refuted by a number of counterexamples.Our goal is to show that for a random A, Pr[PA = NPA] = 0. LetM1;M2; : : : be a listing of all polynomial time-bounded, deterministic oracleTuring machine. That is, PA = fL(MAi) j i � 1g. Momentarily we will de�nean oracle dependent language L(A). It will be easy to see that L(A) 2 NPA,regardless of the oracle A. Thus, the only issue will be whether or not L(A) 2PA. We can approximate as follows:Pr[PA = NPA] � Pr[L(A) 2 PA]= Pr[9i (L(MAi) = L(A))]�Xi Pr[L(MAi) = L(A)]=Xi Pr[8x (x 2 L(MAi) � L(A))] :where A � B = fx j x 2 A, x 2 Bg, i.e., A � B = A4B.First let's de�ne the language L(A). For this we imagine that the elementsof f0; 1g� are arranged in lexicographical order. Whether x (with jxj = n)is in L(A) or not, will be determined by the n2n strings that follow x inlexicographical order.� � � � � � -x� - -� -� � -nnnn f0; 1g�� -n2nThese strings are divided into 2n blocks of n strings each. x is in L(A) if andonly if there is at least one such block of n strings all of which are in A.Exercise 22.2. Given a random oracle A, what is the probability that a stringx with jxj = n is in L(A)? To what value does this probability converge as nbecomes large? C

P 6= NP with probability 1 193Exercise 22.3. Show that for any oracle A, L(A) 2 NPA. CFor every machine Mi, let x1 < x2 < x3 < � � � be a sequence of \widelyseparated" strings. For example, if we choose nj+1 = jxj+1j > jxj j2 = n2j ,then we are guaranteed that the regions of nj2nj strings that determine themembership of each xj in A are all disjoint and, therefore, that the events\xj 2 L(A)" (j = 1; 2; 3; : : :) are completely independent.The events xj 2 L(MAi) (i; j = 1; 2; 3; : : :), however, are not completelyindependent, in particular because the machinesMi can also make very shortoracle queries. But as we will see shortly, we do get \su�cient independence"if we choose the xi's to be so widely separated that nj+1 > 2nj . In this waywe can ensure that (for large j) machineMi on input xj cannot query stringsof length nj+1.Now we can continue the approximation begun above.Pr[PA = NPA]�Xi Pr[8x (x 2 L(MAi) � L(A))]�Xi Pr[8j (xj 2 L(MAi) � L(A))]=Xi Yj Pr[xj 2 L(MAi) � L(A) j xk 2 L(MAi) � L(A); k < j] :The next step is to prove an upper bound on the probability of xj 2 L(MAi) �L(A), (or, equivalently, a lower bound for the probability of a \mistake":xj 2 L(A)4L(MAi)) under the condition thatxk 2 L(MAi) � L(A) for all k < j :We will refer to this condition as C, and in the probability considerationsbelow, we will always assume condition C, which has the e�ect of shrinkingthe probability space of random oracles that we are considering. Essentially,we consider the oracle A to be \�xed" on all strings that are responsible forcondition C, all of which will be much shorter than xj .We can now sketch a partitioning of the probability space as in the dia-gram below:

194 Topic 22
(1) (2)(4)(3) xj 62 L(A)xj 2 L(A)xj 62 L(MAi)xj 2 L(MAi)

By Exercise 22.2 we have(1) + (2) = Pr[xj 2 L(A) j C] = Pr[xj 2 L(A)] > 0:6 ;(3) + (4) = Pr[xj 62 L(A) j C] = Pr[xj 62 L(A)] > 0:3 :Now we approximate the conditional probability:(2)(2) + (4) = Pr[xj 2 L(A) j xj 62 L(MAi); C]= Pr[xj 2 L(A) j xj 62 L(MAi)] :The important observation here, is that in the course of its computation oninput xj , the machine Mi can only query polynomially (in m = jxj j) manystrings of the oracle. Let pi be a polynomial that bounds the number ofqueries. For the purposes of our approximation, we consider these at mostpi(m) oracle strings to be �xed. These strings can lie in at most pi(m) di�erentblocks, so there are at at least 2m � pi(m) blocks that are available for ourrandom experiment. For large m, pi(m) � 2m=2, so just as in Exercise 22.2we can approximate as follows:Pr[xj 2 L(A) j xj 62 L(MAi)] � 1� (1� 1=2m)2m�pi(m)� 1� (1� 1=2m)2m=2� 1=3 :since (1� 1=2m)2m=2 converges to p1=e = 0:606::: .Now we want to show that the probability of error, (2) + (3), is greaterthan 0. For this we consider two cases, depending on the probability of (3).Case 1. (3) � 0:1.Then the value of (2) + (3) is at least 0.1.

P 6= NP with probability 1 195Case 2. (3) < 0:1.In this case, since (3) + (4) > 0:3, we have (4) > 0:2. And since (2)(2)+(4) >1=3 it follows that (2) > 0:1.So in either case we have shown that Pr[xj 2 L(A) � L(MAi)] < 0:9Putting everything together we see thatPr[PA = NPA] �Xi Yj 0:9 = Xi 0 = 0 ;and so we have proven that Pr[PA = NPA] = 0 or Pr[PA 6= NPA] = 1 utExercise 22.4.� Show that Pr[NPA 6= coNPA] = 1. CReferencesFor oracles separating P from NP, see� T. Baker, J. Gill, R. Solovay: Relativizations of the P=?NP question,SIAM Journal on Computing 4 (1975), 431{442.� C.H. Bennett, J. Gill: Relative to a random oracleA, PA 6=NPA 6= coNPAwith probability 1, SIAM Journal on Computing 10 (1981), 96{113.For discussion of the random oracle hypothesis, see� R. Chang, B. Chor, O. Goldreich, et al: The random oracle hypothesis isfalse, Journal of Computer and System Sciences 49 (1994), 24{39.� S. Kurtz: On the random oracle hypothesis, Information and Control 57(1983), 40{47.

196 Topic 22

23. Superconcentrators and the MarriageTheorem
We want to study graphs with special, extreme connectivity properties,prove that they exist, and approximate their size. In the next topic, theexistence of these graphs will be used to obtain certain lower bounds.De�nition 23.1. An n-superconcentrator is a directed, acyclic graph withn input nodes and n exit nodes such that for every choice of k input nodesand k output nodes (1 � k � n) there exist node-disjoint paths through thegraph that connect the k input nodes with the k output nodes (in any order).The following sketch clari�es this for n = 5 and a speci�c choice of 3 inputnodes and 3 output nodes.

gwgww wwwgg
'
&

$
%It is trivial that there are n-superconcentrators with O(n2) edges: thebipartite graph with n input nodes, n output nodes and an edge connectingeach input node with each output node is an example.Exercise 23.1.� It is also relatively easy to build n-superconcentrators withO(n logn) edges using a recursive divide-and-conquer algorithm. Do it. CIt was suspected that this bound is optimal (see, for example, Prob-lem 12.37 in the book by Aho, Hopcroft, and Ullman). Interestingly, it ispossible to construct these graphs with only linear size (where the size is thenumber of edges).Theorem 23.2. There is a constant c such that for every n there is an n-superconcentrator with cn edges.Proof. The remainder of this topic will present one possible construction. Asin Exercise 23.1, the construction will be recursive. But instead of building

198 Topic 23an n-superconcentrator out of two smaller superconcentrators, this time wewill use only one �n-superconcentrator (for some � < 1) in the recursivestep.
XXXX���� -- Ŝ --...... ����XXXXG0GgJJJJJĴ

gJJJJJĴ

�

� hh--
The diagram above indicates the construction. First, each of the n inputnodes is connected directly to its corresponding output node. In addition,there is a \detour" through the graph G, which has n = 6m inputs, 4m out-puts, and certain properties which we will describe below. The 4m outputnodes of G are connected as inputs to the 4m-superconcentrator Ŝ, the out-puts of which are connected to G0, which is identical to G except that thedirection of the edges is reversed. (We ignore here and below the possibilitythat 4m may not be an integer. For our asymptotic approximations this willnot play a role.) The focus of our attention will be on the graph G. It will bepossible to construct such a graph with linear size.Exercise 23.2. Assume that G has linear size and that the construction isotherwise correct. Show that the size of the resulting n-superconcentrator iscn for an appropriate constant c. CIn what follows, we will always assume that n = 6m. The desired graphG will have the property that any set of k � n=2 = 3m input nodes can beconnected with node-disjoint paths to some set of k output nodes. The graphG0 has the dual property that for any choice of k � n=2 = 3m outputs, thereare always k input nodes that can be connected to them by node-disjointpaths.Exercise 23.3.� Assuming these properties of the graphs G and G0, showthat the construction is correct.Hint: How many inputs of the superconcentrator can be connected directlyto output nodes without going through the graphs G, Ŝ, and G0? CThe graph G will be a bipartite graph, that is, the nodes fall into two sets:n = 6m input nodes and 4m output nodes, and the edges connect a nodefrom each set. We must determine how to arrange (linearly many) edges toget the desired property.For a given bipartite graph with edge set E, a subset M � E is calleda matching, if M consists of edges that are pairwise not connected. We are

Superconcentrators 199interested in the maximal size of matchings. Before proceeding with the con-struction of G, we want to consider maximal matchings in isolation.Example.
�������
��������u1u2u3u4u5
XXXXXXXXXXX�����������������������������

��������v1v2v3v4v5
HHHHHHHHHHHHHHHHHHHHHHQQQQQQQQQQQXXXXXXXXXXX�����������XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX���The thick lines indicate a matching M with jM j = 4. A matching with5 edges is not possible since u3, u4, u5 are only connected with nodes v2,and v4. Therefore, in any matching, one of the nodes u3, u4, and u5 must beomitted.Guided by this example, we arrive at the following theorem:Theorem 23.3. Let G be a bipartite graph with n input nodes. Let S be asubset of the input nodes with jSj � n. Then there is a matching startingwith S (and connecting the nodes in S to some jSj exit nodes) if and onlyif for every subset S0 of S, jS0j � jN(S0)j, where N(S0) is the set of nodesconnected to the nodes in S0 (i.e., the set of potential \partners" for the nodesin S).Exercise 23.4.� Prove Theorem 23.3. CTheorem 23.3 is called the Marriage Theorem after the following interpre-tation. The input nodes are the women, the exit nodes the men (or vice versa),and every edge means that the corresponding pair are \friendly," so that amarriage is not excluded. A maximally-sized matching is then a matchingup of the marriage partners that, at least seen globally, leads to the largestamount of satisfaction. Theorem 23.3 says exactly when this is possible.Now we return to the construction of the graph G. From the perspectiveof matchings, G should have the property that every subset of n=2 = 3minput nodes can be matched to some n=2 = 3m exit nodes. The theorem saysthat is the case if and only if for every subset S of input nodes with jSj � 3m,jSj � jN(S)j.We \construct" G probabilistically as follows: We reserve for each inputnode 6 out-going edges, and correspondingly for each exit node 9 in-comingedges. Altogether this is 6 � 6m = 9 � 4m = 36m edges that we may place

200 Topic 23in G. We will choose the edges randomly under the uniform distribution inthe following sense: �rst we choose for the �rst edge leaving node 1 a partnerposition on the exit side, for example the 7th edge entering node 13. So for the�rst choice we have 36m possibilities. For the next choice, 36m� 1, etc. Wewill show that the probability is > 0 that the resulting graph has the desiredmatching property. From this we can conclude that such a graph must exist.Exercise 23.5. How large is the sample space, that is, how many ways arethere to connect the 6m input nodes to the 4m output nodes in the mannerjust described? CWe want to show that the number of \bad" graphs (graphs which do nothave the desired property) is strictly smaller than the number determined inthe preceding exercise. A graph G is bad if and only if there is a k-elementsubset of S with the property that jN(S)j � k � 1, where k � n=2 = 3m.First we note that this can only happen if k � 3.Exercise 23.6. Why? CSo assume k � 3. If G is bad, then there is an integer k and sets S andT such that jSj = jT j = k and N(S) (T . The calculations below work outsomewhat better, however, if we also count situations where N(S) = T , eventhough this does not imply that the graph G is bad. For each k there are�6mk � choices for S and �4mk � choices for T . For a �xed pair S and T withjSj = jT j = k, there are at most 9k6k(36m � 6k)! many ways to choose theedge relations for G such that N(S) � T (for each of the 6k edges leaving S,choose one of the 9k edges entering T , then choose the remaining 36m� 6kedges arbitrarily). We are using here the notation for \falling powers," ab =a(a� 1)(a� 2) � � � (a� b+ 1). So, for example, �ab� = ab=b!.Thus to prove the existence of a graph G (and therefore also of G0) thatis not bad, it is su�cient to show that3mXk=3�6mk ��4mk �9k6k(36m� 6k)! < (36m)! :So it is su�cient to show that3mXk=3 �6mk ��4mk ��9k6k��36m6k � < 1 :To prove this inequality we will use�36m6k � � �6mk ��4mk ��26m4k � :Exercise 23.7. Prove this formula. CUsing this we see that it su�ces to show that

Superconcentrators 2013mXk=3 �9k6k��26m4k � < 1for large n.Exercise 23.8.� Let Lk denote the term �9k6k�=�26m4k � and analyze the behaviorof Lk+1=Lk to conclude that Lk { as a function of k with �xedm { is a convexfunction. Thus the largest summand Lk in the sum above is either the �rstterm (k = 3) or the last term (k = 3m), as in the following sketch:6
- k3 3m

Lk
CFinally, we show that it is su�cient to show that 3mL3 and 3mL3m areboth smaller than 1. (Note that 3m is an upper bound on the number ofsummands in the sum.)Exercise 23.9.� Carry this out to complete the proof. CWith that we have proven the existence of superconcentrators of linearsize and with a constant bound on the degree of each node. utReferences� Aho, Hopcroft, Ullman: The Design and Analysis of Computer Algo-rithms, Addison-Wesley, 1975.� N. Pippenger: Superconcentrators, SIAM Journal on Computing 6 (1977),298{304.� F.R.K. Chung: Constructing random-like graphs, Proceedings of Sympo-sium in Applied Mathematics Vol. 44, American Mathematics Society,1991, 21{55.� S.N. Bhatt: On concentration and connection networks, MIT/LCS Tech-nical Report 196, 1981.

202 Topic 23One can read about additional explicit constructions and application of su-perconcentrators in the contributed chapter by N. Pippenger in� J. van Leeuwen, ed.: Handbook of Theoretical Computer Science, Elsevier,MIT Press, 1990, 805{833.

24. The Pebble Game
The Pebble game is a model for successive execution of a computationwith the use of an auxiliary storage devise. The game can be used tostudy trade-o� e�ects between the memory use and running time for aparticular computation. We will show a lower bound originally proved byPaul, Tarjan, and Celoni (1977) which says that certain graphs, based onsuperconcentrators, require many pebbles.The Pebble game is a one-player game on a �xed directed, acyclic graph. Inthe course of the game pebbles are placed on or removed from nodes in thegraph according to the following rules:1. A pebble may be placed on an input node (a node with no predecessors)at any time.2. If all predecessors of a node u are marked with pebbles, then a pebblemay be placed on node u3. A pebble may be removed from a node at any time.Note that rule 2 subsumes rule 1, but it is nevertheless useful to distinguishthe two cases.A move in this game consists of the placing or removing of one of thepebbles in accordance with one of the three rules. The goal of the gameis to place a pebble on some previously distinguished node v (usually anoutput node) while minimizing the number of pebbles used, by which wemean minimizing the maximum number of pebbles that at any point in thegame are simultaneously on the nodes of the graph, i.e., pebbles that havebeen removed from the graph can be \reused."A strategy for the game is a sequence of legal moves that ends in pebblingthe distinguished node v.

204 Topic 24Example. The following graph

1n����� AAAAK���2�
��3 ��������:������AAK
���6 @@@@I7 6 56���4can be pebbled by placing pebbles on nodes 1 through 7 in order withoutremoving any pebbles. This takes only 7 moves but uses 7 pebbles. Anotherstrategy is represented in the following table:place pebbleon node 1 2 3 4 5 6 7remove pebblefrom node 1 2 4 5number of pebbleson the graph 1 2 3 2 1 2 3 2 3 2 3time 1 2 3 4 5 6 7 8 9 10 11This strategy requires 11 moves but only 3 pebbles.The pebble game is a model for the computation of some result v fromgiven input data. Consider the following machine model:

memoryregisterCPU -� �...
In this model, the use of a register (either to retrieve a value from memoryor to store an intermediate result) corresponds to the placing of a pebble

The Pebble Game 205in the pebble game. Rule 1 says that at any time a value may be loadedinto a register from memory. Rule 2 says that whenever all of the requiredintermediate results for some operation are located in registers, then theoperation can be carried out and the result stored in another register. Finally,Rule 3 says that at any time a register may be \cleared."The graph in the game indicates the dependency structure of the op-erations to be performed. Such graphs arise, for example, in the design ofcompilers. The use of as few pebbles as possible corresponds to the use ofas few registers as possible. With the help of the pebble game, certain time-space trade-o�s can be studied. As in the example above, often one has thesituation that it is possible to perform a pebbling task in relatively few moves(in a short amount of time) but at the cost of using a large number of peb-bles (large memory use). On the other hand, there may be another strategythat uses far fewer pebbles but requires more time, since some of the pebblesthat are removed must later be \recalculated." If a pebbling task cannot besimultaneously solved with minimal space (pebbles) and time (moves), thenwe say that the task exhibits a time-space trade-o�.We want to investigate how many pebbles are in general required to pebblegraphs with n nodes. We must restrict ourselves to families of graphs withrestricted in-degree. Otherwise, the number of pebbles will depend directlyon the in-degree of the graph.For example, consider the family of pyramid graphs:
d d

�JJ] cd d cJJ]

�

�JJ]dd dJJ]

�d d cJJ]

�

�JJ]dd dJJ]

�d dddd

�JJ] JJ] JJ]

�

� d cJJ]

�

�JJ]dd dJJ]

�d dddd

�JJ] JJ] JJ]

�

� dddd

�JJ] JJ] JJ]

�

�JJ]

d

�P5P4P3P2P1 p p pThe pyramid graph Pk hasPki=1 i = k(k+1)=2 = �(k2) nodes and k2� k =�(k2) edges.Exercise 24.1. Show that it is possible to pebble the pyramid Pk with k+ 1pebbles. Note that this is O(pn) pebbles with respect to the number of edges,n, in the graph. CExercise 24.2.� Show that every pebbling strategy for Pk (k > 1) must useat least k + 1 pebbles. (Again, this is
(pn) pebbles expressed in terms ofthe number of edges, n, in the graph.) C� � � � �Now we want to investigate how many pebbles are required for an arbi-trary graph with restricted in-degree. We can restrict our attention to graphs

206 Topic 24of in-degree 2, since every graph with n edges and bounded in-degree d > 2that can be pebbled with p(n) pebbles can be transformed into a graph withat most 2n edges and in-degree 2 that can also be pebbled with p(n) pebbles.Exercise 24.3. Why? CWe will need the following lemma:Lemma 24.1. Every directed, acyclic graph with n edges and in-degree 2 canbe partitioned into two subgraphs G1 and G2 so that G1 contains between n=2and n=2 + 2 edges and all edges between the two graphs go from G1 to G2(and none in the other direction).We will let A denote this set of edges.Sketch: �� ��G1
�� ��G26 6 66edge set A

Exercise 24.4. Prove Lemma 24.1. CNow we want to show that every graph with in-degree 2 can be pebbledwith O(n= logn) pebbles. For this we will analyze the following recursivepebbling strategy:1. If the graph G is small enough (fewer than n0 edges), then pebble thedistinguished node directly. Else continue according to 2, 3, or 4.2. If the distinguished node v is in graph G1, then apply the recursiveprocedure to graph G1, since pebbling nodes in G2 cannot be useful.3. If the distinguished node v is in G2 and A is small (jAj � 2n= logn), thenrecursively pebble every predecessor node to A by applying the recursivestrategy in G1. Leave all of these pebbles in place, but remove all otherpebbles in G1 that were used along the way. This will allow us to pebbleany input nodes of G2, so now start a recursive strategy for pebbling vin G2.4. If the distinguished node v is in G2 and A is big, (i.e., jAj > 2n= logn),then start a recursive pebbling strategy for v in G2, but every time thisstrategy requires placing a pebble on an input node of G2 that has pre-decessors in G1, use the recursive strategy to pebble these nodes in G1�rst, then continue.For the various cases we get the following recursion relations, where P (n)is the maximal number of pebbles required to pebble a graph with n edges:

The Pebble Game 2071. P (n) = O(1) for n � n0.2. P (n) � P (n=2 + 2).3. P (n) � 2n= logn+ P (n=2 + 2).4. P (n) � P (n=2� 2n= logn) + P (n=2 + 2) + 1.We need a solution to this recursion. Let's try P (n) � cn= logn for a suitablylarge constant c.Exercise 24.5. Con�rm that cn= logn is a solution for cases 1 and 2. CExercise 24.6.� Con�rm that cn= logn is a solution for case 3. CExercise 24.7.� Con�rm that cn= logn is a solution for case 4.Hint: Use the equality 1x�a = 1x + ax(x�a) . CWith the aid of this result, it is easy to demonstrate the following inclusionrelationship between two complexity classes:DTIME(t(n)) � DSPACE(t(n)= log t(n)) :Exercise 24.8. Show that there must be context sensitive languages thatcannot be be accepted in linear time.Hint: The class of context sensitive languages is precisely NSPACE(n). C� � � � �Next we want to show that the O(n= logn) bound on the number ofpebbles needed to pebble graphs with n nodes is optimal. This means, wemust construct a family of graphs (Gn)n2I , jI j = 1, such that for everyconstant c > 0 and every n 2 I , at least c � jGnj= log jGnj pebbles are requiredto pebble the graph Gn. (Note: this implies that the inclusion DTIME(t(n)) �DSPACE(t(n)= log t(n)) cannot be improved.)The superconcentrators from Topic 23 will prove very useful in obtain-ing this result. The following lemma demonstrates an important property ofsuperconcentrators with respect to pebbling.Lemma 24.2. If j pebbles are placed on any j nodes of an n-supercon-centrator (0 � j < n) and A is a subset of at least j + 1 output nodes,then there are at least n� j inputs that are connected to A along pebble-freepaths.Exercise 24.9.� Prove Lemma 24.2. CFor every n let C1(n) and C2(n) be two copies of a 2n-superconcentrator.By the results in Topic 23 there is a constant d with jCi(n)j � d2n. Weconstruct the family of graphs fGn j n � 8g recursively beginning with G8,

208 Topic 24which is chosen to be a 28 = 256-superconcentrator. Gn+1 is de�ned asfollows:

C1(n)G1(n)G2(n)C2(n) ����������@@@@I @@@@Ik k kk

@@@@I@@@@I����� ����� kkkk����
@@@@I

����
@@@@I� � �

@@@@
�����

@@@@
������ � �

A1z }| { A2z }| {

| {z }E1 | {z }E2Gn+1 has 2n+1 inputs and outputs, divided into the sets E1; E2 and A1; A2,each of which has size 2n. Each input is connected directly to its correspond-ing output and is also routed through two copies of Gn surrounded by twosuperconcentrators of the appropriate size, which in a certain sense \decou-ple" the inputs and outputs. The outputs of C1(n) are identi�ed with theinputs of G1(n), similarly for G1(n) and G2(n), and G2(n) and C2(n). (Inhis lecture at ICALP 82, Pippenger referred to these graphs as \super-duper-concentrators.")Exercise 24.10. Show that the size of the graph Gn is asymptotically �(n2n).So it is su�cient in what follows to show that there is some c such that atleast c2n pebbles are required to pebble Gn. CExercise 24.11. Show that a C(n) (a 2n-superconcentrator) and a G(n)together still form a 2n-superconcentrator. CThe clever part of the following proof { which, as one expects, will be doneby induction { is to formulate an induction hypothesis that is strong enoughto be useful for the inductive step. It is not su�cient to merely assume thatc2n pebbles are required to pebble Gn { although this is what matters in theend { rather, we must also pack into the inductive hypothesis (and therefore

The Pebble Game 209also prove in our inductive step) some additional properties of the potentialpebbling strategies on Gn.So what is this hypothesis?Theorem 24.3. Let �(n) = 2n=256 = 2n�8. In order to pebble at least14�(n) outputs of Gn (n � 8) in any order, beginning with an initial con�gu-ration in which at most 3�(n) nodes are pebbled, there must be an interval oftime during which at least �(n) nodes remain pebbled and during which timeat least 34�(n) inputs must be pebbled.We note the outputs can be pebbled in any order, and that the pebblesare not required to remain on the output nodes, so that the output nodes donot have to be pebbled simultaneously.Proof. The proof is by induction on n.Exercise 24.12.� Verify the base case of the induction, that is, show that thehypothesis holds for G8.Hint: Use Lemma 24.2. CInductive step: Assume that the hypothesis holds for Gn; we must showthat it holds for Gn+1. Consider an initial con�guration on Gn+1 with atmost 3�(n + 1) = 6�(n) pebbled nodes and assume that in the course ofthe moves 1; : : : ; t at least 14�(n + 1) = 28�(n) outputs are pebbled. Wewill refer to this time period as the time interval [0; t]. We must show thatwithin the interval [0; t] there is a time interval during which there are alwaysat least �(n + 1) = 2�(n) pebbles on the graph and during which at least34�(n+ 1) = 68�(n) outputs are pebbled.We distinguish four cases. In case 1{3 we assume that the pebble strategyproceeds somehow \unevenly." In these three cases, we are able to carry outour proof without using the inductive hypothesis, which is only needed incase 4.Case 1. There is a time interval [t1; t2] � [0; t], during which there are always3�(n) pebbles on the graph and during which at least 7�(n) inputs of G1(n)are pebbled.Let t0 be the last time before t1 at which not more than 6�(n) pebbleswere on the graph. We apply Lemma 24.2 at time t0 to the following twosubgraphs of Gn+1.

210 Topic 24C1(n)����� �����kk . . .| {z }E1
C1(n) @@@@I@@@@I kk . . .| {z }E2So there is a time t0 at which there are at least 2n � 6�(n) = 250�(n)pebble-free paths from E1 to the 7�(n) inputs of G1(n) (= outputs of C1(n))that are pebbled during the interval [t1; t2]. The same bound holds for pebble-free paths starting from E2. So altogether there are 500�(n) pebble-free pathsand, therefore, that many inputs that remain to be pebbled during the timeinterval [t0; t2]. Similarly, during this interval there must be at least 3�(n)�1 � 2�(n) pebbles on the graph. This establishes the claim for the interval[t0; t2].Case 2. There is a time interval [t1; t2] � [0; t], during which there are alwaysat least 3�(n) pebbles on the graph and during which at least 7�(n) inputsof G2(n) are pebbled.The proof in this case is analogous to the one given for case 1, but in thiscase, we apply Lemma 24.2 to the following two subgraphs of Gn+1. Notethat each of these graphs is a 2n-superconcentrator (see Exercise 24.11), sothe lemma applies. C1(n)����� �����kk . . .| {z }E1
C1(n) @@@@I@@@@I kk . . .| {z }E2

G1(n) G1(n)
Case 3. There is a time interval [t1; t2] � [0; t], during which there are always3�(n) pebbles on the graph and during which 14�(n) outputs of Gn+1 arepebbled.During [t1; t2] we can assume without loss of generality that at least 7�(n)outputs of A1 are pebbled. Once again the claim can be established by a proofthat is analogous to the one used in case 1, this time applying Lemma 24.2

The Pebble Game 211to the two subgraphs of Gn+1 depicted below, each of which is again a 2n-superconcentrator (see Exercise 24.11).

C1(n)����� �����kk . . .| {z }E1
C1(n) @@@@I@@@@I kk . . .| {z }E2

G1(n) G1(n)G2(n) G2(n)C2(n) C2(n)@@@@I @@@@Ikk . . .
A1z }| { @@@@I @@@@Ikk . . .

A1z }| {

Case 4. None of the cases 1{3 is applicable.Since we are not in case 3, there must be a time t1 2 [0; t] such that fewerthan 14�(n) outputs of Gn+1 are pebbled during the time interval [0; t1]and at time t1 fewer than 3�(n) pebbles are on the graph. This means thatduring the time interval [t1; t], at least 28�(n)� 14�(n) = 14�(n) outputs ofGn+1 are pebbled. Without loss of generality we may assume that 7�(n) ofthese are in A1. By Lemma 24.2 (applied to C2(n)), at time t1 there are atleast 2n � 3�(n) = 253�(n) pebble-free paths between these 7�(n) outputsof A1 and the outputs G2(n). Thus during the time interval [t1; t], at least253�(n) � 14�(n) outputs of G2(n) must be pebbled.By the inductive hypothesis, there is a time interval [t2; t3] � [t1; t], duringwhich at least 34�(n) inputs of G2(n) (= outputs of G1(n)) are pebbled andduring which there are always at least �(n) pebbles on graph G2(n).Since we are not in case 2, there must be a time t4 2 [t2; t3] so thatwithin the interval [t2; t4] fewer than 7�(n) inputs of G2(n) are pebbled andat time t4, fewer than 3�(n) pebbles are on the graph. So during [t4; t3] atleast 34�(n)�7�(n) = 27�(n) inputs of G2(n) (= outputs of G1(n)) must bepebbled, beginning from a con�guration with at most 3�(n) pebbled nodesat time t4.

212 Topic 24By the inductive hypothesis, there is a time interval [t5; t6] � [t4; t3], dur-ing which at least 34�(n) inputs of G1(n) (= outputs of C1(n)) are pebbledand during which there are always at least �(n) pebbles on graph G1(n).Since we are not in case 1, there must be a time t7 2 [t5; t6] such thatduring the interval [t5; t7], fewer than 7�(n) inputs of G1(n) are pebbled, andat time t7, fewer than 3�(n) pebbles are on the graph. So during [t7; t6] atleast 34�(n) � 7�(n) = 27�(n) inputs of G1(n) (= outputs C1(n)) must bepebbled beginning from a con�guration with at most 3�(n) pebbled node att7. By Lemma 24.2, it follows that at time t7 there must be at least 2n �3�(n) = 253�(n) inputs of E1, and, correspondingly, at least 253�(n) inputsof E2, that are connected to these 27�(n) outputs of C1(n) by pebble-freepaths. So this number of inputs must be pebbled during the time interval[t7; t6]. Also, during this interval, there are at least �(n) pebbles on each ofG1(n) and G2(n), so there must be at least 2�(n) pebbles on Gn+1. Thisdemonstrates the claim for the interval [t7; t6]. utExercise 24.13. Show that it follows from Theorem 24.3 that the O(n= logn)-bound is optimal. CReferencesFor the upper bound on the number of pebbles required see� J. Hopcroft, W.J. Paul, L. Valiant: On time versus space, Journal of theACM 24 (1977), 332{337.� K. Wagner, G. Wechsung: Computational Complexity, VEB DeutscherVerlag der Wissenschaften, 1986.For the lower bound see� W.J. Paul, R.E. Tarjan, J.R. Celoni: Space bounds for a game on graphs,Mathematical Systems Theory 10 (1977), 239{251.

25. Average-Case Complexity
In Topic 8, we noticed that the expected running time of an algorithmdepends upon the underlying distribution of the instances and may ingeneral be di�erent from the worst-case running time. Now we want tolook more carefully at the notions of being easy or hard on average. As itturns out, equating easy on average with polynomially-bounded expectedrunning time has serious drawbacks. But in 1984, L. Levin proposed analternate de�nition and demonstrated its robustness, thereby initiating thestudy of average-case complexity.Many NP-hard problems are of practical importance, but since there is noknown polynomial-time algorithm for any of these problems, other types ofsolutions have been considered: approximation algorithms, probabilistic al-gorithms, algorithms that work e�ciently on an important restricted set ofinputs, etc. Another such alternative is to require that the problem only bee�ciently solvable on average rather than in the worst case, which for someNP-complete problems may be very rare. Indeed, reductions to NP-completelanguages typically reduce instances of an NP-problem to instances of theNP-complete problem that are not very \typical." The natural question, ofcourse, is which NP-problems are easy on average and which are hard.But before we can hope to answer these questions, we need to say whatis meant by easy and hard on average. Presumably, this will involve threecomponents: a class of distributions that we allow (the results of Topic 8indicate that some restriction must be made), a de�nition of easy on average,and a notion of reduction between (distributional) problems that can beused to de�ne hardness on average. We will restrict our attention to decisionproblems, although similar things can be done for search problems as well.For any strings x and y (over some ordered alphabet �), let x < y denotethat x occurs before y in the standard lexicographical order, and let x � 1be the predecessor of x in this order (�� 1 = �). We introduce the followingde�nitions for distributions and density functions over ��:De�nition 25.1. A (probability) distribution � = (�0; ��) can be describedby giving either� a (probability) distribution function ��, i.e., a function �� : �� ! [0; 1]that

214 Topic 25{ is non-decreasing: x < y =) ��(x) � ��(y), and{ converges to 1: limx!1��(x) = 1;� or a (probability) density function �0, i.e., a function �0 : �� ! [0; 1] suchthat Xx2�� �0(x) = 1 :For any distribution � or distribution function ��, the associated densityfunction is �0(x) = ���(�) if x = �,��(x)� ��(x� 1) otherwise;and for any distribution � or density function �0, the associated distributionfunction is ��(x) =Xy�x�0(y):A distributional problem is a pair (A; �) where A is a decision problem(a language) and � is a distribution. For technical reasons we will assumethat �0(�) = ��(�) = 0. It seems natural that we should at least allowdistributions that can be computed in polynomial time. This leads to thefollowing de�nition:De�nition 25.2 (P-computable distribution). A distribution function �is P-computable if there is a deterministic algorithm running in polynomialtime that on input x outputs the binary expansion of ��(x).Note that if a distribution function �� is P-computable, then �0 is alsoP-computable, but that the converse may not be true, since to compute adistribution from a density function requires an exponentially large sum.Exercise 25.1.� Show that if every P-computable density function �0 inducesa P-computable distribution function ��, then P = NP.Hint: It easy to check if a polynomial-time nondeterministic machine acceptsalong a �xed path, but probably hard to tell if there exists a path alongwhich it accepts. Design a distributional problem where �0 and �� reect thisdi�erence. CNevertheless, it is usually more convenient to express things in terms of thedensity function, and we will write � instead of �0 from now on. Note, however,that for P-computability, we always mean P-computability of ��, not of �0.If � is P-computable, then j��(x)j is polynomially bounded. This impliesthat it is not possible to place too much weight on the short strings, i.e.,there is a polynomial p such that for large n the combined weight of allstrings of length n is at least 1=p(n). Of course, the de�nition of P-computabledistribution also rules out the universal probability distribution of Topic 8.Later we will discuss a potentially larger class of distributions as well.We are particularly interested in distributional versions of NP problems.

Average-Case Complexity 215De�nition 25.3 (DistNP). A distributional problem (A; �) belongs to theclass DistNP if A 2 NP and � is a P-computable distribution. Another nota-tion for this class is (NP;P-computable).Typically, a distribution for such a DistNP problem is de�ned in terms ofa density function, which is usually designed to model a random experimentof the following general type: First pick a size (length of string, an integer,number of nodes in graph, etc.) for the instance, then randomly select aninstance of the given size according to some probabilistic experiment. Unlesswe specify some other distribution, we will assume that the selection of asize is done in such a way that the probability of selecting size m is roughlyproportional to 1=m2. This is an easy and natural choice, since Pm 1=mdiverges and Pm 1=m2 converges. Of course, technically, we must scale theprobability by 1=c, where c = Pm 1=m2, to get a probability distribution,but often in the literature this scaling is omitted, and one simply works withprobability distributions that converge to something other than 1.Exercise 25.2. An alternative to scaling �(m) = 1=m2 is to modify � slightlyso that the sum is 1. Show that Xm�1 1m(m+ 1) = Xm�1 1m2 = 1. CFor ease of notation we will adopt the convention of writing 1=m2 for thisdensity function instead of 1=m2.Examples. Each of the following DistNP-problems is de�ned by giving theform of an instance, the question, and a description of the distribution interms of a random experiment. For the �rst example we include an expressionfor the density function as well.� D-HALT{ Instance: A Turing machine (encoding) M , a string x and an integer kwritten in unary.{ Question: Does M(x) halt within k steps?{ Distribution: Randomly pick sizesm, n, and k. Randomly choose a stringM of length m, and a string x of length n. So the probability densityfunction is �(M;x; 1k) = 1jM j2 � 2jM j � 1jxj2 � 2jxj � 1k2 :� D-3COL{ Instance: A graph G.{ Question: Is there a 3-coloring of the graph G? (A 3-coloring is an as-signment of one of three colors to each of the nodes in the graph in sucha way that no pair of adjacent nodes is assigned the same color.){ Distribution: Randomly pick a size n. Randomly choose a graph withvertices 0; 1; : : : ; n by selecting each possible edge independently withprobability 1=2.

216 Topic 25� D-HAM{ Instance: A graph G.{ Question: Is there a Hamiltonian circuit in G?{ Distribution: Randomly pick a size n. Randomly choose a graph withvertices 0; 1; : : : ; n by selecting each possible edge independently withprobability 1=2.Thus far, the de�nitions have all been completely natural. Unfortunately,the naive de�nition for easy on average has serious drawbacks. The obviousde�nition would be the following: A is easy on average if there is a deter-ministic algorithm for deciding membership in A with polynomially-boundedexpected running time, i.e., the running time tA(x) should satisfyXjxj=n�n(x) � tA(x) < cnk ;for some integer constants c and k. Here �n(x) denotes the conditional prob-ability �n(x) = �(x j x 2 �n) = ��(x)=�(jxj = n) if jxj = n,0 otherwise.Unfortunately, this de�nition has serious drawbacks.Exercise 25.3. Find a function f : �� ! R such that f has a polynomially-bounded expected value, but f2 does not.1Hint: Let f be exponential (linear exponent) on a small set of inputs of eachlength. Then f2 will be exponential with a quadratic exponent on those sameinputs. CThis implies that a theory of average-case based on polynomially-bounded ex-pected running time would have several signi�cant drawbacks. Such a de�ni-tion would be machine dependent, since there is a polynomial loss of e�ciencywhen converting between some models of polynomial time computation thatwe normally regard as equivalent. Thus whether or not a distributional prob-lem is easy on average might depend on the underlying model of computation.Worse still, even for a �xed model of computation, the class of problems thatare easy on average would not be closed under operations like composition.This would mean that an algorithm that is easy on average could not neces-sarily be used as a sub-routine in another algorithm that is easy on average(neglecting the time spent on the sub-routine calls). Using the naive de�ni-tion of easy on average, this sort of composition of two algorithms that areeasy on average might result in an algorithm that is not easy on average.Levin's solution to these problems is the following de�nition:1 Throughout this topic, we will use the notation fr or fr(x) to denote [f(x)]rand not the r-fold composition of f with itself.

Average-Case Complexity 217De�nition 25.4 (Polynomial on �-average). A function f is polynomialon �-average if there is a constant " > 0 such thatXx 6=��(x) � f"(x)jxj <1 ;that is, the function f"(x) is linear on �-average.De�nition 25.5 (AP). A distributional problem (A; �) is in the class AP(average polynomial time) if there is an algorithm for A with running timethat is polynomial on �-average.Exercise 25.4. Show that if f and g are polynomial on �-average, then soare max(f; g), fk, f + g, and f � g. CExercise 25.5.� Show that if the expected value of f is polynomially boundedwith respect to some distribution �, then f is polynomial on �-average.Hint: Use the fact that a < 1 + a� for all � � 1. CThus AP has some of the nice closure properties that we expect of a robustcomplexity class.Even though the 3-colorability problem is NP-complete, its distributionalversion, at least with the distribution we have presented, is in AP:Theorem 25.6. The distributional version of the 3-colorability problem,D-3COL, is in AP. utExercise 25.6.� Prove Theorem 25.6.Hint: If a graph G has a copy of K4, the complete graph with four verticesand six edges, as a subgraph, then G cannot be 3-colored. CNow we want to know if there are any DistNP problems that are hard onaverage. For this we want to de�ne a reducibility �r between two distribu-tional problems with the following properties:� Closure: If (A; �) �r (B; �) and (B; �) is in AP, then (A; �) is as well.� Transitivity: �r is transitive.If H is hard for DistNP under a reducibility with these properties, thenH 2 AP () AP = DistNP :It has been shown that if AP = DistNP, then NEXP = EXP, which is consid-ered unlikely.Once again, the simplest thing to try does not have the desired properties.Polynomial-time many-one reductions may map very likely instances of (A; �)

218 Topic 25(on which an AP-algorithm must run quickly) to very unlikely instances of(B; �) (on which an AP-algorithm may run very slowly); this would violatethe closure property. Thus we must design a reducibility that respects thedistributions in some way.De�nition 25.7 (Domination). Let � and � be distributions. Then � �� (read � is dominated by �) if there is a polynomial p such that �(x) �p(jxj)�(x).Let (A; �) and (B; �) be distributional problems and let f : A �Pm B. Then� is dominated by � with respect to f , written � �f �, if there is a distribu-tion �1 for A such that � � �1 and �(y) = �(range(f)) �Pf(x)=y �1(x).De�nition 25.8 (Polynomial-time reduction). (A; �) is polynomial-time (many-one) reducible to (B; �) if A �Pm B via a function f such that� �f �. We will denote this by f : (A; �) �Pm (B; �). utLemma 25.9. The reducibility �Pm is transitive; and if (A; �) �Pm (B; �) and(B; �) 2 AP, then (A; �) 2 AP.Exercise 25.7. Prove that �Pm is transitive on distributional problems. CExercise 25.8.� Show that AP is closed under �Pm. CNow we can give an example of a distributional version of an NP-completeproblem that is DistNP-hard. The problem we will choose is D-HALT , thedistributional halting problem. Although it is relatively straightforward toshow that the usual bounded halting problem is complete for NP, that proofdoes not carry over directly to the distributional setting. In fact, it is notimmediately clear that there are any DistNP-complete problems. Certainlythere is a many-one reduction from any NP decision problem to the haltingproblem, but this reduction may not respect the distributions. In particular,we need to show that D-HALT , which has a �xed distribution, is hard for allNP problems with any P-computable distribution. To achieve this, we willneed to modify the reduction on instances of the decision problem for thesake of respecting the distributions.Theorem 25.10. D-HALT is �Pm-complete for DistNP.Proof. For any NP-problem A there is a nondeterministic machine NA thatdecides membership in A in time p(n) for some polynomial p. We have alreadynoted, however, that the reductionx 7! (NA; x; 1p(jxj))may not respect the distributions involved. Instead we will use a reductionof the form

Average-Case Complexity 219x 7! (NA;�; code�(x); 1jxjO(1)) ;where NA;� is a machine that depends only on NA and � (but not on x) andcode�(x) is an encoding of x.The success of the proof depends upon �nding an encoding satisfying thefollowing lemma:Lemma 25.11. Let � be a P-computable distribution. Then there is an en-coding function code� satisfying the following properties:� Compression. For every x,jcode�(x)j � 1 +min(jxj; log2 1�(x)) :� E�ciency. The function code� can be computed in polynomial time.� Uniqueness. The function code� is one-to-one, i.e., if code�(x) = code�(y),then x = y. utExercise 25.9.� Prove Lemma 25.11.Hint: Distinguish two cases. The case when �(x) � 2�jxj is easy. In the othercase, recall that �(x) = ��(x) � ��(x � 1), and de�ne code�(x) based upona comparison of the binary representations of ��(x) and ��(x � 1). CThe reduction is now de�ned byf : x 7! (NA;�; code�(x); 1q(jxj)) ;where q(jxj) is a polynomial that bounds the sum jxj, the time required tocompute code�(x), and the time required to run NA on input x; and NA;� isa nondeterministic machine implementing the following algorithm:INPUT y;GUESS x such that code�(x) = y;IF NA(x) accepts THEN ACCEPTELSE REJECT;END.This nondeterministic algorithm runs in time q(jxj) on input y = code�(x),so f is a polynomial-time computable many-one reduction on instances. Allthat remains is to show that � �f �, where � is the distribution of D-HALT.Exercise 25.10.� Show that � �f �. CDistributional versions of several other NP-complete problems have alsobeen shown to be �Pm-complete for DistNP, including a tiling problem, thePost correspondence problem, word problems for Thue systems and �nitelypresented groups, and satis�ability.

220 Topic 25� � � � �So what distinguishes distributional versions of NP-complete problemsthat are hard for DistNP from those that are not? Y. Gurevich provided a par-tial answer to this question when he observed that, under a plausible complex-ity theoretic assumption, in many cases the distribution of a distributionalproblem already determines that the problem cannot be DistNP-complete,regardless of the question. This property of distributions that makes distri-butional problems unlikely to be DistNP-complete is atness.De�nition 25.12 (Flat distribution). A probability density function isat if there is an " > 0 such that for all x 2 ��, �(x) � 2�jxj". A dis-tribution function is at if its associated density function is at.So a distribution is at if no long strings are weighted too heavily { noneof them juts out from the others.Exercise 25.11. Show that the distribution of D-HAM is at. CExercise 25.12. Show that the distribution of D-HALT is not at. CTheorem 25.13. No DistNP problem with a at distribution is �Pm-completefor DistNP, unless NEXP = EXP.Proof. Suppose (H; �) 2 DistNP, � is at, and (H; �) is �Pm-complete forDistNP. Since H 2 NP, H 2 EXP. Let A be an arbitrary decision problem inNEXP. Then there is a polynomial p such that A 2 NTIME(2p(n)). We wantto de�ne a distributional problem (A0; �) 2 DistNP that is related to A. Forthis let x0 = x012p(jxj)�(jxj+1), de�ne A0 = fx0 j x 2 Ag, and let � be de�nedby �(z) = �jxj�22�jxj if z = x0 for some x,0 otherwise.Exercise 25.13. Show that A0 2 NP. CSince A0 2 NP, (A0; �) 2 DistNP; and since (H; �)) is complete for DistNP,there is a reduction f : (A0; �) �Pm (H; �). This implies that there is a distri-bution �1 and a polynomial q such that� f(x0) can be computed in 2O(q(jxj)) time.� x 2 A if and only if f(x0) 2 H ,� �(x0) � q(jx0j)�1(x0), and� �(f(x0)) = �(range(f)) Xf(z)=f(x0)�1(z).Now we put these pieces together. First, for notational ease, we will as-sume that �(range(f)) = 1. The argument below can be easily modi�ed if�(range(f)) = c for some constant c < 1.

Average-Case Complexity 221�(x0) � q(jx0j)�1(x0) � q(jx0j) Xf(z)=f(x0)�1(z) � q(jx0j)�(f(x0)) ;so �(f(x0)) > �(x0)q(jx0j) = jxj�2 � 2�jxjq(jx0j) > 12jxj � jxj2 � q(2p(jxj)) > 2�r(jxj) ;for some polynomial r. But since � is at, there is an " > 0 such that�(f(x0)) � 2�jf(x0)j" . From this it follows thatjf(x0)j" � � log(�(f(x0))) < r(jxj) ;so jf(x0)j is polynomial in jxj. Thus A 2 EXP: x 2 A if and only if f(x0) 2 H ,and we can compute f(x0) in 2O(q(jxj)) time, and then determine whetherf(x0) 2 H in 2poly(jf(x0)j = 2poly(jxj)) time.� � � � �The theory of average-case complexity has been extended in several waysfrom the results presented here. One generalization of the theory consid-ers other, less-restrictive reductions between distributional problems. It isfairly straightforward, for example, to generalize polynomial-time many-onereducibility to polynomial-on-average many-one reducibility. All the resultspresented here remain true in that setting as well. Similarly one can con-sider other types of reducibilities, such as truth-table or Turing reducibility.Finally, one can de�ne a notion of randomized reduction. Roughly, a random-ized reduction from (A; �) to (B; �) is given by a probabilistic oracle Turingmachine that on input x with oracle B and random bits r runs in time poly-nomial on � � �0-average (where �0 is the distribution on the random bits r),correctly decides x 2 A with probability at least 2=3, and asks queries in amanner that respects the distributions (so that the reduction may not queryoracle instances of low weight too often). The random reduction is many-oneor truth-table if the Turing machine behaves in one of these more restrictiveways. There are randomized many-one complete problems for DistNP thathave at distributions.A second generalization considers a larger class of distributions:De�nition 25.14 (P-samplable distribution). A distribution � is calledP-samplable if there is a randomized algorithm that takes no input (but ipscoins) and eventually outputs a string x (if it halts) in such a way that� the probability that the algorithm outputs x is �0(x), and� the running time is polynomially bounded in jxj.Exercise 25.14. Show that all P-computable distributions are P-samplable.C

222 Topic 25If certain cryptographic one-way functions exist (polynomial-time computablefunctions that are hard to invert on most instances) then there are P-samplable distributions that are not P-computable.It can be shown that a version of the bounded halting problem with an-other so-called universal distribution (not to be confused with the universalprobability distribution of Topic 8) is �Pm-complete for (NP, P-samplable).(Roughly, the universal distribution in this case amounts to randomly select-ing a P-samplable distribution from an enumeration, and then sampling ac-cording to that distribution.) Furthermore, in the setting of NP-search prob-lems { where a solution must not only give the answer to an NP-predicatebut also provide a witness, and reductions must also preserve witnesses {Impagliazzo and Levin have shown that every distributional problem thatis complete for (NP-search, P-computable) under randomized many-one re-ductions is also complete for (NP-search, P-samplable) under randomizedmany-one reductions. This is a pleasing result, since most natural problemshave P-computable distributions, and it says that in some sense, there is nobetter way to �nd hard instances of a problem like SAT than to pick aninstance uniformly at random. A similar result holds for decision problemsunder randomized truth-table reductions.ReferencesBelow are a number of articles that were used in preparing this topic. Thoseinterested in learning more about average-case complexity are encouraged toconsult the bibliographies of these papers for additional references.� O. Goldreich: Notes on Levin's theory of average-case complexity, avail-able at http://theory.lcs.mit.edu/~oded/surveys.html, 1997.� Y. Gurevich: Average-case completeness, Journal of Computer and Sys-tem Sciences 42 (1991), 346{398.� R. Impagliazzo: A personal view of average-case complexity, Proceedingsof the 10th annual Conference on Structure in Complexity Theory, IEEE,1995, 137{147.� R. Impagliazzo, L. Levin: No better ways to generate hard NP instancesthan picking uniformly at random, Proceedings of the 31st Symposiumon Foundations of Computer Science, IEEE, 1990, 812{821.� L. Levin: Average case complete problems, SIAM Journal on Computing15 (1986), 285{286.� J. Wang: Average-case computational complexity theory, Chapter 12 inComplexity Theory Retrospective II, Springer, 1997.

26. Quantum Search Algorithms
Widespread interest in quantum computation was sparked by an algo-rithm of P. Shor for factoring integers on a quantum computer. We inves-tigate here a more recent quantum algorithm of L. Grover for searching adatabase. This algorithm demonstrates a proven speed-up against the bestpossible classical algorithm for the same task.Up to this point, all of the computing devices and all of the complexity classeswe have considered have been based on classical physics. In the early 1980's,however, P. Benio� proposed a model of computation based on quantum me-chanics. The model of quantum computation was subsequently formalized,primarily due to the work of D. Deutsch. Widespread interest in quantumcomputation was sparked in 1994, when P. Shor gave a feasible quantumalgorithm for factoring integers, a problem that has no known feasible classi-cal algorithm, a fact which underlies many encryption schemes. Thus Shor'salgorithm showed that quantum machines are able { at least in theory {to perform an interesting and important task that classical (probabilistic)machines { perhaps { cannot. There remain, of course, di�culties in imple-menting such an algorithm on a physical device.We want to consider here L. Grover's quantum mechanical algorithm forsearching a database. This algorithm has the advantages of being somewhatsimpler to describe and analyze than Shor's algorithm, since it does not makeuse of as much number theory, and of demonstrating something that canprovably be done more e�ciently on a quantum machine than on a classicalmachine.The database search problem in this context is de�ned as follows. Supposewe have an unsorted data set with N = 2n entries, exactly one of whichmatches our selection criteria. For example, the data set could be a phonebook from which we want to retrieve the name of a person with a particularphone number. (Note that the usual sorting of a phone book does not assistus in this query.) We will assume that we have a means (either by using anoracle or an easily-computed function) of telling when we have located theproper element in the data set, but we have no information about where inthe set this element is located.Classically, of course, there is nothing we can do but look at each entryin the data set until we happen to �nd the correct one.

224 Topic 26Exercise 26.1. What is the expected number of queries to the data set re-quired by such an algorithm? CEven randomization doesn't help us here:Exercise 26.2. If a (randomized) algorithm queriesm elements from the dataset, what is the probability that it will �nd the target element? CThus a classical (probabilistic) algorithm must query the data set in at leastN=2 = 2n=2 steps to have a probability of success that is greater than 1=2.Grover's quantum algorithm reduces this number to O(pN), demonstratinga quadratic speed-up versus any classical algorithm.� � � � �Before de�ning what we mean by quantum computation, let's return for amoment to classical probabilistic computation. A classical probabilistic com-putation gives rise to a computation tree. Each node in the tree is labeled witha con�guration (instantaneous description of tape contents, head location(s)and internal state) of the Turing machine. Edges in the tree are labeled withreal numbers in the interval [0; 1], which correspond to the probability of atransition from the parent con�guration to the child con�guration. Each levelof the tree represents one time step, so the depth of the tree represents therunning time of the machine.Probabilities can be assigned to a node by multiplying the probabilitiesalong the path from the root to that node. The probability of the computationbeing in con�guration c at time t is the sum of the probabilities assigned toeach node at level t that has been assigned con�guration c.In order for such a tree to represent a probabilistic computation, it mustmeet two constraints:� Locality. The probability assigned to the edge from one node to anothermust correspond to the action of one step of a probabilistic Turing machine,so in particular,1. the probability is non-zero only if the underlying nondeterministic Turingmachine could actually make such a transition (thus, for example, theonly tape cells that can change are the ones that were under a head inthe parent con�guration), and2. the probability depends only on the part of the con�guration that deter-mines the action of the machine, and not on the rest of the con�gurationor its location in the tree.� Classical probability. The sum of all probabilities on any level must be 1.Exercise 26.3. Show that if the sum of the probabilities on the edges leavingany node equals 1, then the classical probability constraint is satis�ed. CFor the purposes of complexity considerations, it is usually su�cient to con-sider probabilities from the set f0; 12 ; 1g.

Quantum Search Algorithms 225The computation tree can be represented by a k�k matrixM , where k isthe number of possible con�gurations andMab, the entry at location (a; b), isthe probability of going from con�guration a to con�guration b in one step.Ms then represents the transitions that occur in s steps. The probability thata machine accepts on input x after s steps isXc2�acc Pr[con�guration c at step s j con�guration c0 at step 0] ;where �acc is the set of all accepting con�gurations and c0 is the initialcon�guration corresponding to an input x.In a quantum computation, instead of assigning real-valued probabilitiesto the edges, we assign complex-valued probability amplitudes (with normat most 1). The amplitude of a node in the computation tree is again theproduct of the amplitudes along the path to that node, and the amplitudeassociated with being in con�guration c at step t is the sum of the amplitudesof all nodes at level t labeled with c. Probability amplitudes correspond toprobabilities in the following way: The probability is the squared absolutevalue of the amplitude.As before, our labeling of the tree must satisfy two constraints:� Locality. This condition is the same as before: the labeling of the tree mustcorrespond to the action of a Turing Machine.� Quantum probability. If one represents the quantum computation by a ma-trix M , then M must be unitary, which means that its inverse is equal toits conjugate transpose.This quantum probability condition implies that the sum of the proba-bilities on any level will be 1 (P j�cj2 = 1). This time, however, it is notsu�cient to merely require that the sum of the squares of the amplitudesleaving any node be 1. This is due to the e�ects of interference (canceling)among the con�gurations.Exercise 26.4. Give an example of a labeled tree where the sum of theprobabilities leaving each node is 1, but the sum of the probabilities at somelevel is not.Hint: Two levels su�ce. CExercise 26.5. Show that if all of the entries inM are real numbers in [�1; 1],then M is unitary if and only if it is orthonormal, that is, the dot product ofany two distinct rows or columns is always 0, and the dot product of a rowor column with itself is 1.Hint: Some notation and de�nitions are perhaps in order here: If M is amatrix, we denote the entry in the ith row and jth column by Mij . Thetranspose ofM is denoted byM t and de�ned byM tij =Mji. In the conjugate

226 Topic 26transpose M�, M�ij is the complex conjugate of Mji. So if the entries areall real, then the transpose and conjugate transpose are the same matrix.The inverse of a matrix M is denoted by M�1 and is a matrix such thatM �M�1 = M�1 �M = I , where I is the identity matrix, which consists of1's down the major diagonal and 0's elsewhere. To have an inverse, a matrixmust be square, but not all square matrices have inverses. CNote that a unitary matrix M has an inverse, which means that, unlikeclassical computation, quantum computation is necessarily reversible.For many purposes, it is not necessary to use a particularly rich set ofcomplex numbers; usually rationals and square roots of rationals are morethan su�cient. In fact, for the de�nitions of BQP and NQP, de�ned below, theset f0;�3=5;�4=5;�1g is su�cient for the local transformation amplitudes.Although the de�nitions and mental images for probabilistic computationand quantum computation are in many ways similar, there are important andpowerful di�erences. Unlike a probabilistic machine, which we think of as be-ing in one of a set of con�gurations (with certain probabilities), we considera quantum machine to be in a superposition of con�gurations. This is some-thing like saying that a quantum machine is simultaneously and to varyingdegrees in several con�gurations at once. Upon observation of a quantummechanical device, the superposition collapses to a single con�guration. Theprobability with which each con�guration is observed is determined by itsamplitude in the superposition.We denote a con�guration (also called a quantum state) by jci, and asuperposition of such states byj'i =Xc2� �cjci ;where �c is the amplitude of jci. Algebraically, the states jci, for all con�gu-rations c, form an orthonormal basis in a Hilbert space. Since the basis statesjci are mutually orthonormal, the amplitude �c of jci in a superposition j'iis the inner product of jci with j'i, denoted by hc j 'i.If � is the amplitude of jci in a superposition j�i, then j�j2 is the probabil-ity of observing c when the machine is in superposition j�i. The probability ofaccepting is de�ned as for the probabilistic computation: it is the probabilityof observing an accepting state at a certain time t.The important added wrinkle (which provides the added power) in quan-tum computation is the fact that probability amplitudes can cancel (see Ex-ercise 26.4). For example, there may be two paths in the computation treethat both lead to the same con�guration c, but one may have probabilityamplitude � and the other ��. So, for example, after some number of stepsthe superposition may have the form�jci � �jci+Xc0 6=c�c0 jc0i :

Quantum Search Algorithms 227In this case, the probability of being in state jci is 0. The heart of mostquantum algorithms consists in using superposition to \try out" a number ofpossibilities and using cancellation to reduce the probability of \bad" possi-bilities while increasing the probability of \good" possibilities.The classes NQP and BQP can be de�ned analogously to the classes NPand BPP by replacing the probabilistic machine with a quantum machine:De�nition 26.1. A language L is in NQP if and only if there is a quantumTuring machine Q and a polynomial p such thatx 2 L () Pr[Q accepts x in p(jxj) steps] 6= 0 :A language L is in BQP if and only if there is a quantum Turing machine Qand a polynomial p such thatx 2 L () Pr[Q accepts x in p(jxj) steps] > 3=4 ;x 62 L () Pr[Q accepts x in p(jxj) steps] < 1=4 :It is not known if BQP is equal to some classical complexity class. Itcontains BPP, but results of Fortnow and Rogers have led them to \con-jecture that BQP contains no interesting complexity classes outside BPP."Even if this conjecture holds, BQP-type algorithms will remain interesting,since they can provide a signi�cant increase in speed for some problems (likesearching, as we will see shortly) and at least have the potential to solveinteresting problems that are probably neither NP-complete nor in P, likeGraph Isomorphism (see Topic 18).NQP, on the other hand, has been exactly characterized in terms of clas-sical counting classes: NQP = coC=P, where C=P is the class of languageswhere acceptance is de�ned by a nondeterministic machine that has an equalnumber of accepting and rejecting computations.� � � � �So how does one use quantum computation to speed up a search? Firstwe give a formal de�nition to the search problem. Let f(i) be a function thattells if the ith item in the data set is the item we seek, i.e., there is exactlyone target t 2 [0; N) such that f(t) = 1, otherwise, f(i) = 0. We would liketo design a quantum algorithm that after a certain number of steps withhigh probability (greater than 1=2 in any case) will be in a con�guration thatidenti�es t. That is, imagine that for each i 2 [0; N) there is a con�gurationjcii that represents that the item sought is item number i of N = 2n. Then wewant the probability of jcti to be high at the time we observe our computation.For concreteness, let ci be the con�guration that has i written (as a string oflength n) on its work tape and is otherwise uninteresting (the head is at theleft of each tape, all other tapes are empty, the internal state is some �xedstate �, etc.).

228 Topic 26The quantum algorithm has two main components. The �rst is used togenerate all possible keys (in superposition) and the second is used to separatethe value t for which f(t) = 1 from the others and amplify its amplitude.We begin with the �rst component. Suppose for a moment that we weredesigning a probabilistic machine instead of a quantum machine. Then wemight choose to ip a coin n times and use the outcome of the coin toset the bits of the string on our work tape. More precisely, for each bit insuccession, with probability 1=2 we leave the bit as it is (initially a 0) andwith probability 1=2 we change it to a 1. Now we want to do a similar thingwith our quantum machine. If we focus on a single bit, then we are lookingfor a unitary transformation j0i 7! aj0i+ bj1ij1i 7! cj0i+ dj1i(i.e., a unitary matrix M = � a bc d �) such that jaj2 = jbj2 = 1=2.Exercise 26.6. Find such a matrix.Hint: It su�ces to use real values. CLet W be the matrix (transformation) that is the composition of M ap-plied to each of the n bits in succession. (As a matrix, W is roughly block-diagonal, with copies ofM located at appropriate positions near the diagonal,1's elsewhere on the diagonal and 0's �lling the rest of the matrix.)Exercise 26.7. What superposition results from applying W to jc0i? CExercise 26.8. What superposition results from applying W to jcii? CThe transformation W is known as the Walsh-Hadamard transformation,and it (or a related operation known as the Fourier transformation) is acomponent of many quantum algorithms.Now that we have in some sense generated all the possible keys, we needto do something to distinguish the target t. This is the second component ofthe algorithm. For this we will simply ip the sign of the amplitude of thetarget t. Note that any diagonal matrix with 1's and �1's along the diagonalis unitary, so that this kind of sign ipping (on any set of states) can bedone, provided we know where to place the 1's and �1's. For this we needto know f(i), which we can assume is determined by an oracle call or somesimple, deterministic algorithm. It is known that deterministic computationcan be done reversibly, and this fact has been used to show that deterministiccomputation can be simulated on a quantum machine. Let F denote thetransformation that determines f(i) and ips the sign of the amplitude iff(i) = 1.

Quantum Search Algorithms 229Finally, these two components are combined to form what Grover refersto as the di�usion transformation D. The purpose of D is to amplify the am-plitude of the state corresponding to the target. Let F̂ be the transformationthat ips the sign of all the states except jc0i, that is,F̂ij = 8<:0 if i 6= j,1 if i = j = 0,�1 if i = j 6= 0.The di�usion transformation is D =WF̂W .Exercise 26.9. Compute Dij for arbitrary i and j. CThe transformations F and D form the heart of the algorithm, and W isused once at the beginning as a sort of initialization. With this backgroundlaid, the description of the algorithm is relatively short:1. Initialize by applying W to the initial state jc0i.2. Repeat the following O(pN) times. (We will determine the constant inthe O-notation as part of the analysis. It will turn out to be importantto do this the correct number of times.)a) Apply F . (Flip the amplitude on the target.)b) Apply D. (Di�usion)3. Observe the state of the quantum machine. The probability of jcti willbe at least 1=2.Now we need to show that the algorithm behaves as claimed. In particu-lar, we need to understand what the di�usion transformation is doing. Thedi�usion transformation can be interpreted as an inversion about the averagein the following sense: Suppose the quantum machine is in the superpositionj'i = Xi2[0;N)�ijcii :Let � = 1N Pi �i be the average amplitude over all the states. Then the resultof applying D to j'i is to increase (or decrease) each amplitude so that afterthe operation it is as much above (or below) the average as it was below (orabove) the average prior to the operation. That is,X�ijcii 7!X�ijcii ;where �i = �+ (�� �i) = 2�� �i.Lemma 26.2. The di�usion transformation D is unitary. Furthermore, itperforms an inversion about the average as described above.Proof. For the proof it is useful to have another representation for D. Let Pbe the projection matrix Pij = 1=N . Then D = �I +2P (see Exercise 26.9).

230 Topic 26Exercise 26.10. Show that D is unitary.Hint: First show that P 2 = P . CExercise 26.11. Show that D performs an inversion about the average.Hint: Let x be a vector, what does Px compute? CutNow we introduce some notation for the superpositions that occur in thiscomputation. Let j	(k; l)i = kjcti+Xi 6=t ljcii :We want to express the e�ects of Grover's algorithm using this notation. ByExercise 26.7, step 1 (the initialization) of the algorithm amounts toW : jc0i 7! j	(1pN ; 1pN)i :And by Lemma 26.2, each iteration of step 2 isj	(k; l)i F7! j	(�k; l)i D7! j	(N�2N k + 2(N�1)N l; N�2N l � 2N k)i :Note that after one iteration, k1 is still very nearly 1=pN (since the averageamplitude prior to applying D was very nearly 1=pN), but l1 is approxi-mately 3=pN . The hope is that each iteration increases k by
(1=pN), sothat after O(pN) iterations, k =
(pN � 1pN) � 1p2 .Let 	j = j	(kj ; lj)i denote the superposition after j iterations. In thepaper where Grover originally presented his algorithm, he proved that therewas a number of iterations j � p2N such that k2j � 1=2. His proof followedfrom a sequence of lemmas about the transformation D, culminating in thefollowing lemma:Lemma 26.3. If 0 < kj < 1p2 and lj > 0, then �k = kj+1� kj > 12pN , andlj+1 > 0.The problem with this argument, however, is that Lemma 26.3 onlyprovides a lower bound on �k. Thus while we know there is an iterationm � p2N after which k2m � 1=2, we don't know what m is. In fact, after ex-actlyp2N iterations the probability is less than 9.5% that we will observe thetarget. From there it continues to decrease to a negligible probability beforeit eventually increases again. Thus it is important to know m explicitly.In order to know precisely when to make our observation, we need atighter analysis. This was provided in a paper by Boyer, H�yer and Tapp,where explicit formulas are given for kj and lj . Using standard techniques(and some patience), the recurrence for k and l can be solved, giving explicitformulas for kj and lj .

Quantum Search Algorithms 231Lemma 26.4. Let kj and lj be de�ned as above, thenkj = sin((2j + 1)�) ;lj = 1pN � 1 cos((2j + 1)�) ;where � is chosen so that sin2(�) = 1=N .Exercise 26.12.� Prove Lemma 26.4.Hint: Although it is a bit arduous to solve the recurrence relations to get theexplicit formulas of the lemma, it is straightforward to prove by induction thatthe formulas are indeed correct. Readers who have forgotten the trigonometricidentities may need to refer to an undergraduate calculus text. CFrom this it follows that km = 1 when (2m + 1)� = �=2, i.e., whenm = (��2�)=4�. Of course this is probably not an integer, but the probabilityshould be almost 1 if we perform approximately this many iterations. Sincefor small �, sin(�) � �, the number of iterations needed is approximately(� � 2�)=4� � �=4� � �4pN :In fact, after we have generalized the problem slightly, we will prove thefollowing lemma:Lemma 26.5. After b�pN4 c iterations of Grover's algorithm, the probabilityof failure is less than 1=N . After b�pN8 c iterations of Grover's algorithm, theprobability of failure is at most 1=2.However, if we iterate twice as many times (about �pN2 iterations), the prob-ability of success is negligible!� � � � �Before proving Lemma 26.5, we want to generalize the algorithm to handlemore than one target. Suppose there is a set of targets T such thatf(i) = �1 t 2 T ,0 t 62 T .Grover's algorithm (or at least his analysis) dealt only with the case thatjT j = 1.What happens if we apply the same algorithm when jT j > 1? De�nej�(k; l)i =Xi2T kjcii+Xi 62T ljcii :Then each iteration of Grover's algorithm has the e�ect

232 Topic 26j�(k; l)i 7! j�(N�2jT jN k + 2(N�jT j)N l; N�2jT jN l + 2jT jN k)i :Once again, this recurrence can be solved, this time yieldingkj = sin((2j + 1)�)pjT j ;lj = cos((2j + 1)�)pN � jT j ;where sin2(�) = jT j=N .The probability of success is greatest when l is smallest, and lm̂ = 0 ifm̂ = (� � 2�)=4�, but that may not be an integer. Let m = b�=4�c instead.Note that jm � m̂j � 1=2. So j(2m + 1)� � (2m̂ + 1)�j � �. But, by thede�nition of m̂, (2m̂ + 1)� = �=2, so j cos((2m + 1)�)j � j sin(�)j. Thus theprobability of failure after m iterations is(N � jT j)l2m = cos2((2m+ 1)�) � sin2(�) = jT j=N :Since � � sin(�) = pjT j=N , m � �4� � �4q NjT j , the algorithm requiresO(pN=jT j) iterations. The expected running time until a target is foundcan be improved slightly by running the algorithm for fewer iterations (at acost of a lower probability of success) and repeating the entire algorithm ifunsuccessful. This is because the sine function is quite at near its extremevalues, so that the last iterations do less to increase the probability than theearlier ones.The case where jT j = N=4 is particularly interesting. In this case, sin2 � =1=4, so � = �=6, and l1 = tN � jT j cos(3�) = 0 :This means that the probability of success is 1 after just one iteration. Itshould be mentioned, that this really involves two queries to the data set,one to determine if there is a phase shift (sign ip) and one as part of the\uncomputation" which makes this reversible.Exercise 26.13. What is the expected number of queries required by thenaive classical probabilistic algorithm when jT j = N=4? CExercise 26.14. What is the worst case for a classical algorithm? (Imaginethat an adversary is determining the outcome of your coin tosses.) CThus the quantum algorithm uses only half of the number of queriesexpected for a classical probabilistic algorithm, and exponentially fewer (inn) than a classical algorithm uses in the worst case.

Quantum Search Algorithms 233� � � � �There have been other generalizations of Grover's algorithm, a few ofwhich we summarize briey here. The �rst two generalizations deal with thecase when jT j is unknown. Suppose �rst that we want to locate one of thetargets t 2 T , but we don't know how many targets there are. If we use�4pN iterations, we will almost certainly �nd the target t if it is unique.But if jT j = 4, then the probability of success after this many iterations isnearly 0. Boyer, H�yer, and Tapp give an algorithm with expected runningtime O(pN) for �nding a target in this case as well. The main idea is torandomly selectm, the number of iterations (from some setM , where initiallyM = f1g), and then to run Grover's algorithm for that many iterations. Ifthis is not successful, it is done again, but with a larger set M .Brassard, H�yer, and Tapp also consider the problem of approximatingjT j, rather than �nding an element of T . In their recent paper they give analgorithm that demonstrates a trade-o� between the accuracy of the approx-imation and the running time of the algorithm. Furthermore, they show thattheir algorithm is in some sense optimal. This paper also considers the prob-lem of amplitude ampli�cation, the key ingredient in Grover's algorithm, ina more general setting. This allows them to demonstrate a speed-up betweenquantum and classical search algorithms even in the case where better thanbrute force methods exist classically.All of the algorithms above begin from a superposition with only one non-zero amplitude. Another way to generalize the problem is to consider otherpossible initial superpositions, such as might occur if quantum searching wereused as a subroutine in a more complicated quantum algorithm. Results ofBiham, Biham, Biron, Grassl, and Lidar show that the optimal time forobservation can be determined in this situation as well and that it dependsonly on the means and variances of the initial amplitudes on T and T .Finally, we make two comments on Grover's algorithm. One might ask ifthere are even better quantum search algorithms which require, say, O(logN)queries to the database. But this is not possible. Grover's algorithm is op-timal in the sense that any quantum algorithm for searching must make atleast
(pN) queries to the database. Also, the reader may have noticedthat we have assumed throughout that N is a power of 2. This assumptionsimpli�es the arguments and notation somewhat, but it is not an essentialrestriction. It can be avoided by replacing the Walsh-Hadamard transforma-tion by any transformation in a large class of transformations, of which theWalsh-Hadamard transformation is the simplest when N is a power of 2.ReferencesFoundational work in the theory of quantum computation can be found in

234 Topic 26� P. Benio�: The computer as a physical system: A microscopic quantummechanical Hamiltonian model of computers as represented by Turingmachines, Journal of Statistical Physics 22 (1980), 563{591.� E. Bernstein, U. Vazirani: Quantum Complexity Theory, Proceedings ofthe 25th Annual Symposium on Theory of Computing, ACM, 1993, 11{20.� D. Deutsch: Quantum Theory, the Church-Turing principle and the uni-versal quantum computer, Proceedings of the Royal Society London SeriesA 400 (1985), 96{117.� R.P. Feynman: Simulating physics with computers, International Journalof Theoretical Physics 21:6/7 (1981/82), 467{488.Prior to the results of Shor and Grover, there were already indications thatquantum computation is more powerful than classical computation (on some-what contrived problems).� D. Deutsch, R. Jozsa: Rapid solutions of problems by quantum compu-tation, Proceedings of the Royal Society of London, 1992, 553{558.� D. Simon: On the power of Quantum Computation, SIAM Journal onComputing, 26:5 (1997), 1474{1483.Many papers on Grover's algorithm and its generalizations (as well as a num-ber of other topics related to quantum computation) are available as LANLpreprints at http://xxx.lanl.gov. The site is easily searchable, so we includehere only those papers that were most instrumental in preparing this topic.� E. Biham, O. Biham, D. Biron, M. Grassl, D. Lidar: Exact solution ofGrover's quantum search algorithm for arbitrary initial amplitude distri-bution, LANL preprint quant-ph/9807027.� M. Boyer, G. Brassard, P. H�yer, A. Tapp: Tight bounds on quantumsearching, Proceedings of 4th Workshop on Physics and Computation,1996, 36{43. Final version to appear in Fortschritte der Physik. AlsoLANL preprint quant-ph/9605034.� G. Brassard, P. H�yer, A. Tapp: Quantum Counting, LANL preprintquant-ph/9805082.� L. Grover: A fast quantum mechanical algorithm for database search,Proceedings of the 28th Annual Symposium on Theory of Computing,ACM, 1996, 212. Also LANL preprint quant-ph/9605043.� L. Grover: A framework for quantum mechanical algorithms, Proceedingsof the 30th Annual Symposium on Theory of Computing, ACM, 1998.Also LANL preprint quant-ph/9711043.

Quantum Search Algorithms 235Shor's algorithm originally appeared in� P. Shor: Algorithms for quantum computation: Discrete log and factoring,Proceedings of the 35th Symposium on Foundations of Computer Science,IEEE, 1994, 124{134.but see also� A. Ekert, R. Jozsa: Quantum computation and Shor's factoring algo-rithm, Reviews of Modern Physics 68 (1996), 733{753.� P. Shor: Polynomial-time algorithms for prime factorization and discretelogarithms on a quantum computer, SIAM Journal on Computing 26:5(1997), 1484{1509. Also LANL preprint quant-ph/9508027.For information on the relationship between quantum complexity classes andclassical complexity classes, see� L. Adleman, J. Demarrais, M-D.A. Huang: Quantum computability,SIAM Journal on Computing 26:5 (1997), 1524{1540.� C. Bennett, E. Bernstein, G. Brassard, U. Vazirani: Strengths and weak-nesses of quantum computing, SIAM Journal on Computing 26:5 (1997),1510{1523.� S. Fenner, F. Green, S. Homer, R. Pruim: Quantum NP is hard for PH,to appear in Proceedings of the 6th Italian Conference on TheoreticalComputer Science, 1998.� L. Fortnow, J. Rogers: Complexity limitations on quantum computation,Proceedings of the 13th IEEE Conference on Computational Complexity,IEEE, 1998, 202{209.� J. Watrous: Relationships between quantum and classical space-boundedcomplexity classes, Proceedings of the 13th IEEE Conference on Compu-tational Complexity, IEEE, 1998, 210{227.For a survey of results in quantum computational complexity from a some-what di�erent perspective see� A. Berthiaume: Quantum Computation, chapter 2 in Complexity Retro-spective II, Springer, 1997.

236 Topic 26

Solutions
1.1. For every decidable language A and any (arbitrary) language B, A �TB.1.2. The halting problem H = f(x; y) j y 2 Wxg is m- (and therefore alsoT-) complete for the class of computably enumerable languages. For if Ais computably enumerable then there is an i such that A = Wi. The mapy 7! (i; y) is an m-reduction from A to H .Now let A be a language which is T-equivalent to the halting problemand suppose there is a language B which is computably enumerable and T-incomparable to A. Since B is computably enumerable, B �T H and sinceH �T A, it follows that B �T A. Contradiction.1.3. If there are two Turing incomparable, computably enumerable lan-guages, then neither one can be computable (exercise 1.1). But by the claimone would have to be computable if the incomparability could be demon-strated e�ectively.1.4. It is su�cient to show that if A is computably enumerable and h iscomputable, then h�1(A) is computably enumerable.The following procedure enumerates h�1(A):FOR all pairs of integers (i; j) DOIF h(i) = j-th element enumerated into A THEN OUTPUT i;ENDENDThis can be shown even more simply, but this method shows B is many-onereducible to A via g � f . Since A is computably enumerable it follows that Bis computably enumerable.1.5. The element with highest priority, (0; x) 2 LA, reaches its �nal locationat the very beginning.The element with the second highest priority, (0; x) 2 LB, can be removedfrom of LA and \slid over" at most one time. So there are at most two\incarnations" for this element.The element with the third highest priority, (1; x) 2 LA, has at most threepossible \incarnations."

238 SolutionsIn general the number of incarnations satis�es the recursive formula:f(n) = 1+f(n�1)+f(n�3)+f(n�5)+� � �+f(a), where a is 0 or 1, and f(0) isde�ned to be 1. This results in the Fibonacci sequence 1; 1; 2; 3; 5; 8; 13; 21; : : :since f(n) = f(n� 1) + f(n� 2)= f(n� 1) + f(n� 3) + f(n� 4)= f(n� 1) + f(n� 3) + f(n� 5) + f(n� 6)= f(n� 1) + f(n� 3) + f(n� 5) + f(n� 7) + f(n� 8)...2.1. The numbers a and b must be relatively prime.2.2. The given system of equations has a solution if and only ifkXi=1(fi(x1; : : : ; xn))2 = 0has a solution.2.3. This problem can be reduced to the solution of the equationkYi=1 fi(x1; : : : ; xn) = 0 :2.4. f(x1; x2; : : : ; xn) = 0 has a solution if and only if one of the 2n equationsf(x1; x2; : : : ; xn) = 0f(�x1; x2; : : : ; xn) = 0f(x1;�x2; : : : ; xn) = 0...f(�x1;�x2; : : : ;�xn) = 0has a solution in N . This demonstrates the existence of a Turing reductionbetween the two problems.With the help of the previous exercise, this disjunction can be convertedinto a single equation. That gives a many-one reduction.2.5. Every natural number x can be written as x = u2 + v2 +w2 + z2 withu; v; w; z 2 Z. So f(x1; : : : ; xn) = 0 has solutions in the natural numbers ifand only if

Solutions 239f(u21 + v21 + w21 + z21 ; : : : ; u2n + v2n + w2n + z2n) = 0has integer solutions.2.6. The register Rj can be set to zero by:a : IF Rj = 0 GOTO db : DEC Rjc : GOTO ad :The instruction Rm := Rj can be simulated by:a : \Rn := 0"b : \Rp := 0"c : IF Rj = 0 GOTO hd : DEC Rje : INC Rnf : INC Rpg : GOTO ch : IF Rp = 0 GOTO li : DEC Rpj : INC Rjk : GOTO hl :2.7. If the register Rj has the value 0, that is, Wj has a 0 in the appropriateplace in the sequence-number coding (where Ni has a 1), then there will be a1 in the corresponding bit of B � T � 2 �Wj at the next step. So Ni+1 cannothave a 1 there but rather must have a 0. Because of the previous equation,B �Ni �� Nl +Ni+1, Nl must have a 1 there, so the next instruction to beexecuted will be instruction l, as desired.If the register Rj contains a value > 1, then B � T � 2 �Wj has a 0 in thebit corresponding to the next step. (This explains the factor of 2 { to avoidchanging the value of the bit at the current time step. This is also why weneeded the condition B < 2 � S.) So Ni+1 must have a 1 and Nl a 0 at thatposition. Thus, the next instruction to be executed will be instruction i+ 1,as desired.2.8. The exercise follows immediately from the hint and the observationthat �00� = �10� = �11� = 1 and �01� = 0.The hint can be proven as follows: �yx� is the coe�cient on the term T x inthe expression (1+T)x. Mod 2, these coe�cients can be computed as follows:(1 + T)y � (1 + T)yn:::y0 � nYi=0(1 + T)2i�yi� nYi=0(1 + T 2i)yi � nYi=00@ yiXj=0�yij �T 2i�j1A :

240 SolutionsIn the product on the right side there is exactly one choice of terms whichwhen multiplied together give a term T x. This term is obtained by settingj = yi in each sum. Thus, we get �yx� �Qni=0 �yixi� (mod 2), which is what wewanted to prove.Note: the computation above would be correct modulo any prime numberp. (Use pi instead of 2i.)2.9. We reduce Dioph(N) to the problem in question. f 2 Dioph(N) if andonly if f2 2 Dioph(N). The polynomial f2 has only non-negative values. Thepolynomial f2 can be written as f2 = g � h, where g has all the terms off2 with positive coe�cients and h has all the terms with negative coe�-cients (once more negated). The polynomials g and h then have only positivecoe�cients. Furthermore, since f2 � 0, we have g � h. So we get:f 2 Dioph(N) () f2 2 Dioph(N)() 8x h(x) < g(x)() 8x h(x) + 1 � g(x) :The map f 7! (h+ 1; g) yields the desired reduction.2.10. We imagine the polynomial f as a tree structure. The leaves of thetree are labeled with the variables x1; : : : ; xn and the coe�cients, and theinternal nodes of the tree are labeled with the operations + and �. The rootof the tree represents the function f .Every internal node is now assigned a new variable y0; : : : ; yk, y0 beingassigned to the root. Then f = 0 is equivalent to requiring that y0 = 0 andthat for each branching of the form%%%%eeeeop yivuyi = u op v (i.e., yi � (u op v) = 0), where op 2 f+; �g and u and v may benew variables (y0; : : : ; yk), original variables (x1; : : : ; xn), or coe�cients.None of the Diophantine equations fi has a total degree greater than two.Therefore, the Diophantine equation that is equivalent to the conjunction ofall of these equations (namely, P f2i = 0) has total degree at most four.3.1. Assignment statements have loop-depth 0. If R is a LOOP-program ofthe form P ;Q where P and Q have loop-depth p and q, respectively, then Rhas loop-depth max(p; q). If R is a program of the form LOOP X DO P ENDand P has loop-depth p, then R has loop-depth p+ 1.

Solutions 2413.2. The following program simulates subtraction (.�):Y := 0; Z := 0;LOOP X DO Y := Z; Z := Z + 1 END;X := Y3.3. The following program simulates \IF X = 0 THEN P END":Y := 0; Y := Y + 1;LOOP X DO Y := 0 END;LOOP Y DO P END3.4. In the following, instructions that appear in quotation marks indicatesuitable LOOP(1)-programs, which exist by the previous exercises.\Z := X .� k"; Y := 1;LOOP Z DO Y := 0 END;\W := X .� m"; (m = k � 1)U := 0;LOOP W DO U := 1 END;LOOP U DO Y := Y + 1 END;\Y := Y .� 1";LOOP Y DO P END3.5. Let the input register of An be S and the output register T .A := 1; X := n;LOOP S DO Dn END;T := 1;LOOP A DO T := 0 ENDDn must be a LOOP(1)-program so that An will be a LOOP(2)-program.3.6. The following program simulates w:Y := X1;LOOP X2 DO Y := 0 END

242 Solutions3.7. A LOOP(1)-program for x MOD k:Z1 := 0;Z2 := 1;...Zk := k � 1;LOOP X DOZk+1 := Z1;Z1 := Z2;Z2 := Z3;...Zk := Zk+1;END;Y := X1A LOOP(1)-program for x DIV k:Z1 := 0;Z2 := 0;...Zk := 0;LOOP X DOZk+1 := Zk;Zk := Zk�1;...Z2 := Z1 + 1;Z1 := Zk+1;END;Y := X13.8. A LOOP(0)-program can only consist of a sequence of instructions ofthe form X := 0, X := Y and X := X +1. From this it is clear that only thegiven functions can be computed.3.9. w(f; x) + w(g; w(1; x))3.10. k1 + � � � + k(xMOD t) = w(k1; (x MOD t) .� 1) + w(k2; (x MOD t) .�2) + � � �+ w(kt�1; (x MOD t) .� [t� 1])3.11. For each index position i 2 f1; : : : ; ng one has M +K many di�erentequivalence classes, so altogether there are (M +K)n.3.12. Case 6: Let M̂ = max(M1;M2) + K2 and K̂ = K1 � K2. Leti 2 f1; : : : ; ng be arbitrary. It su�ces to show that w(f(x); g(x)) andw(f(x0); g(x0)) di�er by a constant (independent of x), where x =(x1; : : : ; xn) and

Solutions 243x0 = (x1; : : : ; xi�1; xi + K̂; xi+1; : : : ; xn) ;and each xi > M̂ . By the inductive hypothesis, there are constants �i and �0isuch that f1(x0)� f1(x) = K2 � (K1 � �i) = K̂ � �iand f2(x0)� f2(x) = K1 � (K2 � �0i) = K̂ � �0i :If �0i > 0, then by the choice of M̂ (and because xi > M̂), f2(x) and f2(x0)are both strictly greater than 0. Thus, the value of the function w is 0 atboth places. So in this case, = 0. If �0i = 0 and f2(x) > 0, then we alsohave = 0. In the case that �0i = 0 and f2(x) = 0, the value of w is given byf1, so = K1K2�i = K̂�i.Case 7: Let M̂ = M and K̂ = k �K. Let i 2 f1; : : : ; ng be arbitrary. Itis su�cient to show that f(x) DIV k and f(x0) DIV k di�er by a constant (independent of x), where x = (x1; : : : ; xn) andx0 = (x1; : : : ; xi�1; xi + K̂; xi+1; : : : ; xn) ;and xi > M̂ . By the inductive hypothesis, there are constants �i and �0i suchthat f(x0)� f(x) = k �K � �i = K̂�i. So we havef(x0) DIV k � f(x) DIV k = K�i = K̂ �ik :3.13. By Lemma 3.4, the value of f(x) for x 2 Nn can be determined inthe following manner: First, one repeatedly reduces each component xi of x(provided xi > M) by K until one gets two points x(0)i and x(1)i that lie inthe interval (M;M + 2K] as sketched in the diagram below. -� � � � � � xiM + 2Kx(1)ix(0)iM0 K K K K K KClearly, x(0)i = M + (xi MOD K), x(1)i = x(0)i +K, and xi = x(0)i + tKfor an appropriately chosen integer constant t � 0. Now let�i = f(x1; : : : ; x(1)i ; : : : ; xn)� f(x1; : : : ; x(0)i ; : : : ; xn):Then f(x) = f(x1; : : : ; x(0)i ; : : : ; xn) + �i(x(1)i � x(0)i)= f(x1; : : : ; x(0)i ; : : : ; xn) + �itKBy reducing each component xi in this manner, we arrive at an f -value fora point in Q. Thus, if the two functions are di�erent, they must di�er on apoint in Q.

244 Solutions3.14. LetM = max(M1;M2) andK = K1 �K2. The equivalence relation M;K�re�nes both M1;K1� and M2;K2� . This means that the two given functions f1 andf2 agree if and only if all multi-linear functions on the common equivalenceclasses agree. As in the previous exercise, these functions are completelycharacterized by their values on points x with xi < M + 2K.3.15. Logical NOR can be used to simulate the boolean functions AND,OR, and NOT: NOT(x) = NOR(x; x)AND(x; y) = NOR(NOT(x), NOT(y))= NOR(NOR(x; x), NOR(y; y))OR(x; y) = NOR(NOR(x; y), NOR(x; y))So it is su�cient to give a LOOP(1)-program for NOR:Y := 1;LOOP X1 DO Y := 0 END;LOOP X2 DO Y := 0 END3.16. We can simulate n input variables X1; : : : ; Xn with a single inputvariable X by adding the following preamble to our program:X1 := X MOD 2;X2 := X MOD 3;X3 := X MOD 5;...Xn := X MOD pn;where pn is the nth prime number. By the Chinese Remainder Theorem, weknow that there is a suitable value for X for any choice of X1; : : : Xn.4.1.INPUT x;k := f(jxj);p := 0;FOR y 2 ��, jyj = jxj DORun M on y ;IF M accepts THENIF y = x THEN REJECT END;p := p+ 1;END;END;IF p = k THEN ACCEPT ELSE REJECT END.

Solutions 245Note: The boxed portion of the algorithm is nondeterministic.If x 62 A, then there is a nondeterministic computation of this algorithmthat accepts on input x: at each pass through the for loop, if y 2 A a pathmust be chosen that causes M to accept y. In this case, at the end of theloop we will have p = k.If, on the other hand, there is a nondeterministic computation that causesthis algorithm to accept x, then since at the end of the loop p = k, all of thestrings y such that jyj = jxj and y 2 A were discovered, and none of themwas x, so x 62 A.4.2. Time complexity: tf (n) + 2O(n) � tM (n);Space complexity: sf (n) +O(n) + sM (n).4.3. It is su�cient if the nondeterministic machine computes f in the fol-lowing sense:1. Every nondeterministic computation is either \successful" and outputs anumeric value or is \unsuccessful" and outputs nothing.2. At least one output is successful and, therefore, produces an output.3. All successful computations produce the same output value, namely f(n).4.4. One can modify the algorithm given in Solution 4.1 to use g instead off , to loop over all y interpreted as expressions, and to \verify that S �) y"instead of \starting M on y."4.5.f Assume k = jTni j gp := 0;FOR y 2 (V [�)�, jyj � n DOf := FALSE;m := 0;FOR z 2 (V [�)�, jzj � n DOIF S i)G z THENm := m+ 1;IF (z)G y) OR (z = y) THEN f := TRUE END;END;END;IF m < k THEN REJECT END;IF f THEN p := p+ 1 END;END;f Now p = jTni+1j gNote: the boxed portion of the algorithm is nondeterministic.In the inner loop the counter m is compared against k to check that thenondeterministic choices were made correctly. The computation only con-tinues to the outer loop if this is the case. In this way we can be certain

246 Solutionsthat the number p is correct at the end of the algorithm (in the case that anondeterministic computation reaches that point without rejecting sooner.)5.1. L- and NL-machines are o�-line Turing machines, which means thattheir specially designated input tapes can only be used to read the input.For the purposes of this exercise, let a con�guration of such a machine bean instantaneous description of the current state, the head position on the(read-only) input tape, the head position on the work tape, and the contentsof the work tape. Let Z be the set of all such con�gurations, and A thealphabet. Then a c � logn space-bounded Turing machine has at mosta = jZj � (n+ 2) � (c � logn) � jAjc�logn = O(nk)many di�erent con�gurations, where k is an appropriate constant. So if thecomputation runs for more than a steps, some con�guration must be re-peated. But then the machine must be in an in�nite (non-terminating) loop,and, therefore, does not accept.To see that NL � P, consider the following procedure for some �xedNL-machine: On input x, systematically generate all con�gurations that canbe reached from the starting con�guration until a halting con�guration isreached or all reachable con�gurations have been generated. Since the numberof con�gurations is bounded as above, this can be done in polynomial time.5.2. Let M1 and M2 be two log-reduction machines. On input x, it is notpossible to simply let the machines run one after the other, since M1 mayoutput a string that is polynomially long in the length of x and, therefore,cannot be stored in logarithmic space. Instead we proceed like the pipe con-cept in UNIX: We start M2 as the main process (on an empty tape), butwhenever M2 tries to read an input tape symbol we start M1 on input x asa sub-process to generate this symbol. (All other output symbols producedby M1 are immediately erased.) Since M1 requires only logarithmic space(which can be reused each time the process is run) and polynomial time,the total space devoted to process M1 is logarithmic and the time for M1 ispolynomial.5.3. It is clear that PATH 2 NL: Nondeterministically guess a path froma to b. This can be done by nondeterministically generating a sequence of nnodes in the graph and checking to see if adjacent pairs in the sequence areadjacent in the graph and if both a and b occur in the sequence. The onlyspace needed is the space to store a pair of nodes and a counter.Now let A be in NL via a O(log n) space-bounded machine M . By Exer-cise 5.2, this machine has at most polynomially many con�gurations on aninput of length n. The desired reduction of A to PATH outputs for any x thegraph in which each such con�guration is a node, and the there is an edgefrom ci to cj if cj is a con�guration that could follow ci in the computation oninput x. This can be done, for example, by producing for each con�gurationthe �nite list of possible successor con�gurations.

Solutions 247The start node a in the PATH -problem is the start con�guration of theTuring machine. The end node in the PATH -problem is a unique acceptingcondition. (The machine M can be modi�ed so that there is always oneunique halting con�guration.) Since each con�guration can be written downin O(log n) bits, this reduction is logarithmically space-bounded.5.4. A con�guration can, in general, have more than one predecessor con�g-uration. If the graph described in the solution to Exercise 5.2 is interpretedas an undirected graph, then it may be possible on some input x that is notin the language to nevertheless reach the halting con�guration by travelingsome of the edges \backwards," that is, by traveling from a con�guration toa possible predecessor rather than to a successor.5.5. Consider the following algorithm on an input of length n.Success := FALSE;WHILE NOT Success DOChoose one of a) and b) with equal probability:a) Move the read-only head on the input tape one cell to the right.IF the end of the input is reached THEN Success := TRUE;b) Move the read-only head on the input tapeback to the �rst input symbol;ENDThe probability of successfully reaching the end of the input on the �rstattempt is 2�n. Each additional attempt costs at least one step, so the ex-pected value of the time until the algorithm successfully halts is at least 2n.5.6. For the following directed graph the same statements are true as weremade in the preceding exercise.���0 ���1- - � � � -���n��- � �6" !6So if we choose a = 0 and b = n, then the expected length of time to getfrom a to b is exponential.5.7. If the edge probabilities are not all the same, then there must be edgeswith probability greater than 1=2e and others with probability less than 1=2e(since the sum of all probabilities is 1). Let pmax > 1=2e be the maximal edgeprobability that occurs in the graph. There must be at least one edge (u; v)with this probability that has an adjacent edge (v; w) with a strictly smallerprobability. (Since G is connected, if this were not the case, every edge wouldhave probability pmax, but then the sum over all edges would be greaterthan 1.) All other edges adjacent to (u; v) have probability at most pmax. SoP(u;v) = pmax must be strictly larger than the weighted sum of the adjacentedges' probabilities, i.e.,

248 SolutionsP(u;v) > 1d(v) � X(v;w)2GP(v;w) ;as was to be shown.5.8. Let Y be the following 0-1-valued random variable�1 if X � a,0 if X < a.Then X � a � Y . From this it follows that E(X) � E(a � Y) = a � E(Y) =a � Pr[X � a].5.9. On average, we must visit node u d(u) times until v occurs as thesuccessor node. So E(u; v) can be bounded above by d(u) � E(u; u) = d(u) �2e=d(u) = 2e. (This is in general a very crude approximation, since it possibleto get from u to v via some other route that does not use the edge (u; v).)5.10. We proceed by induction on n, the number of nodes in the graph. Thestatement is clearly true for graphs with only one node. Let G be a connectedgraph with n+1 nodes. There must be a node that can be removed withoutdestroying the connectivity of the graph. In the remaining graph, by theinductive hypothesis, there must be a path of length 2n. The removed nodewas attached to this path by at least one edge. By traveling this edge once ineach direction, we obtain a path of length at most 2n+ 2 that includes thisnode as well.5.11. LetX be the number of steps in a random walk from a to b. By Markovinequality (letting a = 2E(X)) we get Pr[X > 8en] � Pr[X � 2E(X)] �E(X)=(2E(X)) = 1=2.5.12. For each of the n nodes we must determine a �rst, second, etc. up todth adjacent node. Each time we have (roughly) n possibilities. So for eachnode we have no more than nd possibilities, and altogether there are no morethan (nd)n = ndn possible ways to specify such a graph.6.1. x1 x2 x30 0 0 00 0 1 00 1 0 00 1 1 01 0 0 01 0 1 01 1 0 01 1 1 0Unsatis�able!

Solutions 2496.2. Correctness: The last clause (;) in a resolution proof is clearly unsatis-�able. Now we work inductively from back to front and show that the set ofinput clauses to a resolution proof is unsatis�able. Let K1, K2 be two resolv-able clauses with resolvent K3 = K1 [K2�fxi; xig that occurs in portion ofthe proof already considered (at which time it represented an input clause).Suppose that the set of input clauses to the resolution proof, now augmentedby clauses K1 and K2 is satis�able via an assignment �. Then, in particular,� must satisfy K1 and K2. The variable xi, on which the resolution occurred,is true in one of these clauses, its negation in the other false (or vice versa).Thus in one of the clauses, a di�erent literal must be true under �. This literalremains in the resolvent K3, so K3 is also true under �. But this contradictsthe inductive hypothesis.Completeness: For an unsatis�able set of clauses with one variable thereis an obvious resolution proof. Now assume completeness for sets of clausescontaining up to n variables. Consider an unsatis�able set of clausesM withn+ 1 variables.First put xn+1 = 0 (all occurrences of xn+1 can now be stricken, and foreach occurrence of xn+1 the entire clause in which it occurs can be stricken).This results in another unsatis�able set of clauses M0. Analogously form M1by putting xn+1 = 1. By induction there are resolution proofs for M0 andM1. Now we reconstruct the original clauses fromM { that is, we reintroducexn+1 in M0 and xn+1 in M1 and also in the corresponding resolvents in bothresolution proofs. Either one of the resulting resolution proofs still containsthe empty clause (now derived from M), in which case we are done, or wehave the resolvents fxn+1g and fxn+1g, from which we can derive the emptyclause in one more resolution step.6.3. We construct the path from back to front, starting at the empty clause.If we are at a clause K in the path with �(K) = 0, then exactly one of thepredecessors of this clause is true under �, the other false. We select the onethat is false under � and continue the construction from there.6.4. The existence of a SUPER proof system for refutation is equivalent tothe existence of a nondeterministic, polynomial time-bounded algorithm forSAT , so SAT 2 NP. Since SAT is NP-complete, SAT is coNP-complete. Bythe closure of NP under polynomial reductions coNP � NP, so coNP = NP.In the other direction: If NP = coNP, then SAT 2 NP, so there is anondeterministic, polynomial time-bounded Turing machine for SAT . The\possible next con�guration calculus" of this machine is then a SUPER proofsystem for refutation.

250 Solutions6.5.
Type 2-clauses:
Type 1-clauses:��� ��� ��� ���
		 	 	 	 	 		 	 	 				 	 	 	 	 		 	 	 				 	 	 	 	 		 	 	 		

6.6. Empty positions in the diagram below are understood to be 0's.111116.7. (n+ 1)!6.8. The type 1 clause that has the 0-column of � �lled with �.6.9. The same clause as in the preceding exercise.6.10. A 	 in the 0-column would cause the clause to be true under �.6.11. Since � is critical, the diagram for � must have n 1's, each in a di�erentrow. Since n=2 �'s occur in the 0-column, n=2 possible rows are ruled out.Since S has already �xed n=8 1's, that rules out (in the worst case) anothern=8 positions. So at least n� (n=2 + n=8) = 3n=8 possibilities remain.6.12. If there were two 	's in one column then at least one would have tobe in a position where there is a 0 in �. From this it would follow that theclause is true under �.6.13. The alteration from 0 to 1 (in the original 0-column) has no e�ect,since that position of KS does not contain �. The alteration from 1 to 0(in one of the 3n=8 1-positions) has no e�ect, since that position of KS (byassumption) does not contain 	.

Solutions 2516.14. Suppose fewer than (3n=8+1)�(n=2)n�(n+1) � t clauses are taken care of. Sincethe position was chosen maximally, in every other position strictly fewer than(3n=8+1)�(n=2)n�(n+1) � t �'s occur. Now we sum over all positions in the clauses andobtain an upper bound on the number of �'s in all t clauses together: thereare strictly fewer than (3n=8 + 1) � (n=2) � t. This is a contradiction, since wehave argued that each of the t clauses that is input to the greedy algorithmhas at least (3n=8 + 1) � (n=2) �'s.7.1. A tautology has a model of every size, so choose something like F =(P _ :P), where P is 0-ary.7.2. We let F express that there are at least 3 di�erent elements in theuniverse, but that in any set of 4 elements, two of them are the same:F = 9x9y9z (:(x = y) ^ :(x = z) ^ :(y = z))^ 8u8x8y8z (u = x _ u = y _ u = z _ x = y _ x = z _ y = z) :7.3. We describe a recursive procedure that evaluates F using A. L representsa list of variable conditions, which is initially empty.PROCEDURE eval (F;A; L) : BOOLEAN;VAR b : BOOLEAN;BEGINIF F = (G �H) THEN f � is a boolean operation gRETURN eval(G;A; L) � eval(H;A; L) END;IF F = 9xG THENb := FALSE;FOR w := 1 TO jAj DOb := b OR eval(G;A; L [f(x;w)g)END;RETURN b;END;IF F = 8xG THENb := TRUE;FOR w := 1 TO jAj DOb := b AND eval(G;A; L [f(x;w)g)END;RETURN b;END;IF F = P (x1; : : : ; xm) f where (xi; wi) 2 L gTHEN RETURN The value of the relation corresponding to Pon the tuple (w1; : : : ; wm)END;IF F = (xi = xj) THEN RETURN wi = wj END;END

252 SolutionsThe running time of this algorithm is polynomial, the degree of the polyno-mial depending on the number of quanti�ers in F . (Remember F is not partof the input to the algorithm but �xed.)7.4. An NP-algorithm for a given formula F on input 1n guesses nonde-terministically a structure A appropriate for F . This can be written downusing polynomially (in n) many bits; the polynomial depends on F . Then thealgorithm tests as in the previous exercise whether A is a model for F . Thisshows that the problem is in NP.On input of a binary representation of n everything works just as above,but the running time is increased to (2n0)k = 2kn0 , with respect to the newlogarithmically shorter input length n0.7.5. An NP-algorithm for a given formula F on input A = (M ;R) { codedas a string { nondeterministically guesses relations Ri on the universe foreach Pi in the formula. These can be written down using polynomially manybits. Then the algorithm tests, as in the previous two exercises, whetherA0 = (M ;R;R1; : : : ; Rm) is a model for F . This shows that the problem is inNP.7.6.8x8y n̂i=1Min(yi) !� n̂i=2Min(xi) ^Min(x1) ! (E(x1)! P(z0;1)(x;y)^(:E(x1)! P(z0;0)(x;y)))�^ � n̂i=2Min(xi) ^ :Min(x1) ! (E(x1)! P1(x;y)^(:E(x1)! P0(x;y)))�^ n_i=2�:Min(xi)! P (x;y)�!7.7. 8x8y ^a 2 � ^b 2 �b 6= a :(Pa(x;y) ^ Pb(x;y))7.8. 8x8y � k̂i=1(Min(xi) ^Max(yi)) ! P(ze;)(x;y)�

Solutions 2537.9. F = 8x:(x < x)^ 8x8y (x < y ! :(y < x))^ 8x8y8z ((x < y) ^ (y < z)! (x < z))^ 8x8y ((x < y) _ (y < x) _ (x = y))7.10. Suppose NP1 is closed under complement and let L 2 NEXP. Thenthe language t(L) = f1n j bin(n) 2 Lg(where bin(n) is the binary representation of n) is in NP. By our assumption,t(L) 2 NP. From this it follows that L 2 NEXP.In the other direction, suppose NEXP is closed under complement, andlet L 2 NP. Then the languageb(L) = fbin(n) j 1n 2 Lgis in NEXP. By assumption, b(L) is in NEXP. From this it follows that L 2 NP.This result originated with� R.V. Book: Tally languages and complexity classes, Information andControl 26 (1974), 186{193.8.1. Since the Kolmogorov complexity of a string is the length of someprogram, it is clear that this must be � 0. The length of a program thathas a \dummy" input instruction and then proceeds to output x withoutmaking any use of the input provides an upper bound for K(x j y), i.e.,K(x j y) � K(x). For any string x 2 f0; 1g�, \OUTPUT `x' " is always apossible program that outputs x. This program has length jxj + c0 for someconstant c0. So K(x) � jxj+ c0.8.2. The program \INPUT v; OUTPUT v", where v is a variable, hasconstant length, so K(x j x) � c for all x.8.3. There is a program of �xed length that, by means of a suitable approx-imation algorithm, on input n produces the �rst n digits of �. Let c be thelength of such a program. Then for all n, K(�n j n) � c.8.4. In the worst case, the K-values of the 2n strings of length n are dis-tributed as follows:K = 0 once ,K = 1 twice,K = 2 four times, ... K = n�12n�1 times, and �nallyK = n for one string. If we add these values and divideby the number of strings (2n) we get

254 SolutionsE(K(x)) � 12n � n+ n�1Xi=0 i2i!= n2n + n�1Xi=0 i2i�n= n2n + nXj=1(n� j)2�j� n2n + nXj=1 n2�j � 1Xk=0 k2�k= n0@2�n + nXj=1 2�j1A� 1Xk=0 kXl=1 2�k= n� 1Xl=1 1Xk=l 2�k= n� 2 :The same argument also holds for E(K(x j y)), where y is arbitrary.8.5. Suppose x 7! K(x) is computable via a programM (which halts on allinputs). We can useM as a sub-routine in the following sequence of programsP1; P2; : : :, where Pm isx := �;REPEATx := successor of x;UNTIL M(x) outputs a value � m;OUTPUT xNotice that the the constant m is a parameter in this program. The length ofPm is O(1) + logm; furthermore, each program m describes some string xm,namely the lexicographically �rst string such that K(x) � m. But since Pmdescribes xm, K(xm) � jPmj = O(1)+ logm. For large m, O(1)+ logm < m,which is a contradiction, since K(xm) � m. Thus the function x 7! K(x)cannot be computable.(This proof resembles the Berry Paradox; see page 7 of the book byMachtey and Young.)8.6. The argument here is similar to that used in the Exercise 8.4.Xfx:jxj=ng2�2K(xjn) � 2�2n + n�1Xi=0 2i2�2i

Solutions 255= 2�2n + n�1Xi=0 2�i� 2 :8.7. There are at most 1+2+4+ � � �+2logm�k�1 = 2logm�k�1 = m2�k�1programs of length < logm�k. Each one describes at most one string x withK(x j y) < logm�k. So there must be at leastm�m2�k+1 = m(1�2�k)+1strings left over.8.8. There are only � n3n=4� = � nn=4� strings of length n with 34n 1's and 14n0's. By Stirling's formula (n! � p2�n � (ne)n), we get:� nn=4� = n!(n=4)! � (3n=4)!�r 83�n � �43�3n=4 � 4n=4=r 83�n � (1:7547:::)n :There is an algorithm of length O(1) + log i that outputs the ith string oflength n with the property that it has 34n 1's and 14n 0's. Since log i is boundedby log�q 83�n � (1:7547:::)n� � (0:8112:::) � n, this length is strictly less thann. So such a string cannot be Kolmogorov-random.The approximation above can also be obtained via the Binomial Theorem:1 = �14 + 34�n= nXi=0 �ni�(1=4)i(3=4)n�i� n=4Xi=0 �ni�(1=4)i(3=4)n�i= n=4Xi=0 �ni��3=41=4�(n=4)�i (1=4)n=4(3=4)3n=4� (1=4)n=4(3=4)3n=4 � n=4Xi=0 �ni� :From this it follows thatPn=4i=0 �ni� � 4n=4�(4=3)3n=4 = (1:7547:::)n. In general,it can be shown in the same manner that P�ni=0 �ni� � 2n�H(�), where 0 �

256 Solutions� � 1=2 and H(�) = �[� log� + (1 � �) log(1 � �)] is the entropy function.See� D. Welsh: Codes and Cryptography, Oxford University Press, 1988, p. 39.8.9. Let TA(x) be the running time of algorithm A on input x. ThenTwcA (n) = maxfTA(x) : jxj = ngis the worst-case complexity of A, andT av;�A (n) = Xfx:jxj=ng�(x)TA(x)is the average-case complexity under the universal distribution �. We havealready seen that TA(xn) = TwcA (n) and �(xn) � � for some constant �.From this it follows thatT av;�A (n) = Xfx:jxj=ng�(x)TA(x)� �(xn)TA(xn)= �(xn)TwcA (n)� � � TwcA (n) ;as was to be shown.9.1. Since pi � 2, ni � log2 n. So jbin(ni)j � log logn and the length of theencoding of the �nite sequence n1; : : : ; nk is O(k log logn) = O(log logn).9.2. Suppose we have shown that pm � m log2m. Then we can put n ��(n) log2 �(n) and solve for �(n):�(n) � nlog2 �(n) � nlog2 n since �(n) � n :9.3.INPUT hm; ki;Determine the mth prime number. Call it p.Compute n := p � k and OUTPUT n;9.4. We can determine the length of w from the initial portion of the codingstring (the end of which is marked with a `1'); then we can read w. Since weknow how long w is, this is self-terminating.The length of the coding is given byjcode(w)j = jwj + 2 log jwj:

Solutions 257We get the bound on pm by plugging in:logn � K(bin(n)) � logm+ 2 log logm+ logn� log pm ;from which it follows thatlog pm � logm+ 2 log logmpm � m log2m :9.5. If we let code0(w) = code(bin(jwj))w then the length of an encoding ofa string of length n is n+ logn+ 2 log logn. This can be iterated further togive an encoding of length n+logn+log logn+log log logn+ � � �+2 log(m) n.By using code0 instead of code, our approximation is improved to�(n) � nlogn(log logn)2 :9.6. If n is prime, then it can be described by giving its index in the increas-ing sequence of prime numbers. This leads to the following contradiction:K(bin(n)) � log�(n) � logn�
(log logn).9.7. We get: 2n � K � g � (c+2 log(g+n))+ d. Since every n-place booleanfunction can be computed with O(2n) gates, log(g + n) = O(n). Plugging inyields: g � 2n=O(n) =
(2n=n).9.8. A formula corresponds to a binary tree in which all interior nodes(the gates) have exactly two children. In such a tree it is always the casethat the number of interior nodes is 1 less than the number of leaves. Sothe number of times an input is mentioned is 1 + g. The post�x code fora formula consists of 1 + g inputs, each requiring about log(n) bits, and goperations, each requiring a constant number of bits. So the length of anencoding of a formula with g gates using post�x notation is bounded aboveby O(g) + O(g logn) = O(g logn). From this it follows as in the previousexercise that 2n � K � O(g logn), so g =
(2n= logn).9.9. Every state that appears in one of the crossing sequences occurs atsome point in the computation and, therefore, contributes 1 step to the totalrunning time. On the other hand, every state that occurs at some point inthe computation must appear once in some crossing sequence.9.10. If the crossing sequences (at i) are identical, then both computationsbehave exactly the same in the portions of the computation during which thetape head is left of i. But by our assumption that Turing machines only haltwith the tape head at the left end of the tape, they must either both acceptor both reject.9.11. See above.

258 Solutions9.12. We can paste together the portions of the computations (left and rightof position i) and we see that the computation remains essentially unchanged.9.13. Suppose the crossing sequences are identical. Apply the lemma fromExercise 9.12 to show that the crossing sequences (at position i) of w0jwjwand w0jwjw0 are also identical. Now apply the lemma from Exercise 9.10 withx = w0i�jwj, y = 02jwj�iw and z = 02jwj�iw0. But xy 2 L and xz 62 L. Thisis a contradiction, so the crossing sequences must be di�erent.9.14.INPUT hM;m; i; ci;FOR w; jwj = m DOSimulate M on input w0jwjw andnote the crossing sequence at position i.If this crossing sequence is the same as c, then output w;END9.15. timeM (x) = 1Xi=�1 jCSM (x; i)j � 2n=3�1Xi=n=3 jCSM (x; i)j� 2n=3�1Xi=n=3 �n=3�O(log n)�� n2=9�O(n logn) =
(n2) :10.1. The probability is � (1� �)(1� ").10.2. Using Exercise 8.8, this number is at most"2nXi=0 �2ni � � 2H(")2n ;where H is the entropy function.10.3. For PAC-learnability it su�ces to choose m � ln 2" (log jH j+log(1=�)).Now let jH j = 2p(n)�m1�� and plug inm � ln 2" �p(n) �m1�� + log(1=�)� = ln 2 � p(n)" �m1�� + ln 2 � log(1=�)" :From this we get m� � p(n) ln 2" + log(1=�) ln 2"m1�� :

Solutions 259It su�ces to choose m� � p(n) ln 2" + log(1=�) ln 2" :From this we get m ��p(n) ln 2 + log(1=�) ln 2" �1=� :This is polynomial in n, 1=" and 1=�.10.4. There are 2n+1 possibilities for the choice of a literal zij . So there areat most (2n+ 1)k possible monomials (in fact, there are fewer). A DNFn;k-formulas consists of an arbitrary subset of these monomials (conjunctivelycombined). There are 2(2n+1)k such subsets.10.5. Let the function to be learned be f = Wli=1mi, where the monomialsmi represent a certain choice of the � (2n + 1)k monomials with at most kliterals. The hypothesis function h initially includes all possible monomialswith at most k literals. In each pass through the loop, the only monomialsm removed from h are the monomials such that m 62 fm1; : : : ;mlg. Thisguarantees consistence with the negative examples. But h is also consistentwith respect to the positive examples since we always ensure that h � f .11.1. Every n-place boolean function is equivalent to a logic formula, whichcan be expressed in either disjunctive normal form or conjunctive normalform. These two forms correspond correspond to depth 2 OR-AND and AND-OR circuits. But the size of the formulas generated in this way is exponentialin general.11.2.
x1 x2 x1 x2 x2 x2 x1 x2

�� ��� ��������� EEEE AAAA �������� EEEEAAAA
�� �@@@@����AND ANDOR

11.3. The fan-in on the �rst level (at the AND-gates) is d and the fan-in onthe second level (at the OR-gates) is cd.11.4. Replace all AND-gates with OR-gates (and vice versa) and all xi inputgates with xi (and vice versa). This corresponds to DeMorgan's laws:

260 Solutionsx _ y = x ^ y ;x ^ y = x _ y :This method works for any function. For parity in particular there is an evensimpler method: Sincepar(x1; x2; : : : ; xn) = par(x1; x2; : : : ; xn) ;we only need to swap x1 with x1.11.5. Since parn(0; x2; : : : ; xn) = parn�1(x2; : : : ; xn)and parn(1; x2; : : : ; xn) = parn�1(x2; : : : ; xn) ;these restrictions always result in another parity function or its complement.11.6. Every AND-gate on level 1 of a depth 2 circuit for parn must haven inputs. That is, every variable or its complement must be one of the in-puts. Suppose this were not the case, i.e., there is some AND-gate that ismissing (WLOG) both xn and xn. The inputs are xi11 ; xi22 ; : : : ; xin�1n�1 withij 2 f�1;+1g. This AND-gate outputs 1 (and therefore the entire circuitoutputs 1) if we put xj = 1 exactly when ij = 1 (j = 1; 2; : : : ; n � 1). Nowwe can set xn to be either 0 or 1 without changing the output of the circuit.So the circuit does not correctly compute parity. Contradiction.Now if each AND-gate in the circuit has n inputs, as we have just shownis necessary, then each of these AND-gates can only capture one row of thetruth table for parn. Since there are 2n�1 rows of the truth table with thevalue 1, there must be 2n�1 AND-gates.11.7. Using XOR-gates with two inputs, we can compute parity with acircuit in the form of a balanced tree:
�� �XOR �� �XOR �� �XOR �� �XOR�� �XOR �� �XOR�� �XOR���� ZZZZ��� \\\\\\��� x8x7x6x5x4x3x2x1

Solutions 261Each XOR-gate can now be replaced by a small circuit of AND- and OR-gates. Note that we need to provide this circuit with both variables and theirnegations, and that the circuit likewise \outputs" both XOR and XOR.
�� ��� ��� ��� �

�� ��� �TTT��� ��� TTTOR OR ANDANDANDAND x yyx
XOR(x; y) XOR(x; y)

As one can see, the above solution only requires AND- and OR-gates ofconstant fan-in (namely 2). The boolean functions that can be computed byconstant fan-in O((log n)k) depth circuits form the class NCk. So we havejust shown that PARITY 2 NC1. In fact, all symmetric boolean functions arein the class NC1.11.8. Let Yi be a random variable that is 1 if the ith trail results in suc-cess, 0 otherwise. E(Yi) = 1 � p + 0 � q = p. So E(X) = E(Pni=1 Yi) =Pni=1 E(Yi) = n�p. Furthermore, V (X) = E((X�E(X))2) = E(X2)�E(X)2= E((Pni=1 Yi)2)� (np)2 = E(Pni=1Pnj=1 YiYj)� (np)2 = n(n� 1)p2+np�(np)2 = n � p � (1� p).11.9. Pr[jX � E(X)j � a] = Pr[(X � E(X))2 � a2]. By Markov'sinequality, Pr[(X �E(X))2 � a2] � E((X �E(X))2)=a2 = V (X)=a2.11.10. Pr[X � 17] � Pr[jX �E(X)j � 13] � V (X)132 = 100�0:3�0:7169 = 0:124:::11.11. Pr[X � a] = nXi=a �ni�pi(1� p)n�i� nXi=a �ni�pi� pa nXi=a �ni�� pa � 2n :

262 SolutionsIn fact, we can show an even better approximation:Pr[X � a] = nXi=a �ni�pi(1� p)n�i= n�aXi=0 � na+ i�pa+i(1� p)n�a�i� n�aXi=0 �na��n� ai �pa+i(1� p)n�a�i= �na�pa n�aXi=0 �n� ai �pi(1� p)n�a�i= �na�pa� napa= (np)a :Using this approximation, the approximations in Exercises 11.16 and 11.20can also be improved.11.12. Suppose there is a family of polynomial-size, depth t circuits forPARITY. If we arti�cially add a new �rst level consisting of (AND- or OR-gates) with fan-in 1 (one connected to each variable used in the gate), thenwe get a depth t+1 circuit with constant input fan-in, which contradicts theclaim.11.13. Let X be the random variable that contains the number of variablesthat remain in Srn. ThenPr[fewer than pn=2 variables remain in Srn]� Pr[jX �E(X)j � pn=2] � V (X)(pn=2)2= O (1pn) :In fact, it is possible to prove much sharper bounds (look for Cherno� bounds,cf. Topic 17).11.14. We must show that for every n we can �nd a restricted circuit withexactly n inputs. Let n be �xed. As a starting point, consider the circuit S4n2 .With probability greater than 0, the circuit Sr4n2 still has at least n inputs.Thus there exists a restricted circuit with m inputs where n � m � 4n2. Thesize of this circuit is O((4n2)k) = O(n2k). If we now set any m � n of theinputs to 0, then we get the desired circuit which is polynomial in size andhas exactly n inputs.

Solutions 26311.15. Pr[AND-gate not 0]� Pr[all inputs 6= 0]� Pr[an arbitrary, �xed input is not 0]4k lnn� (3=4)4k lnn (for n � 4)= n4k ln(3=4)� n�k (since ln(1� x) � �x)11.16. Pr[AND-gate depends on more than a variables]� 4k lnnXi=a �ni�(1=pn)i(1� 1=pn)n�i� (1=pn)a � 24k lnn (Exercise 11.11)= n�a=2 � n8k= n8k�a=2Solving 8k � a=2 = �k for a, we obtain the constant a = 18k.11.17.Pr[the AND-gate is not constant = 0]� Pr[none of the OR-gates obtains the value 0]� (Pr[an arbitrary, �xed OR-gate does not get set to 0])d�lnn� (1� 4�c)d�lnn (for n � 4)= nd�ln(1�4�c)� n�d�4�c (since ln(1� x) � �x)= n�k (plugging in d)11.18. In this case there are at most d � lnn such OR-gates, and each onehas fan-in at most c. So jH j � c � d � lnn.11.19. If there were an OR-gate with a set of variables disjoint from H ,then the set of OR-gates that de�ned H would not be maximal, since thisOR-gate with disjoint variables could be added to the set.11.20. By Exercise 11.18, jH j � cd lnn. So by Exercise 11.11 we get theapproximation: Pr[h > a] � 2cd lnn � (1=pn)a� n2cd � n�a=2= n2cd�a=2 :Solving 2cd� a=2 = �k for a, we get a = 4cd+ 2k.

264 Solutions12.1. OR(x1; : : : ; xn) = 1�Qni=1(1� xi).12.2. The error probability is (1=2)t. We put (1=2)t � " and get t � log(1=").12.3. AND(x1; : : : ; xn) � p(1 � x1; : : : ; 1 � xn). This corresponds to theDeMorgan law:AND(x1; : : : ; xn) = NOT(OR(NOT(x1); : : : ;NOT(xn))) :12.4. Pr(jT\Slog n+2j > 1) � Pr(jT\Slog n+2j � 1) � �n1��2�(logn+2) = 1=4:12.5. The probability is � 3=4 that case 1 does not occur, and in case 2,the probability is � 2=3 that there is an i with jT \ Sij = 1. Therefore, weget a probability of at least (3=4) � (2=3) = 1=2.12.6. O(log(s=") � logd(s)). As long as s = s(n) is a polynomial, " = 1=4 (forexample) is a constant and the depth d is constant, then this is polylogarith-mic in n.12.7. Suppose there is no choice of random decisions with the property thatfor at least 0:9 � 2n values of a, p(a) = f(a). That means that for all randomdecisions which lead to a polynomial p, there are less than 0:9 � 2n values ofa with p(a) = f(a). But then the expected value must be less than 0:9 � 2n,a contradiction.12.8. In one direction the function is x 7! 1�2x, in the other x 7! (1�x)=2.12.9. The number of 1's in a 0-1 vector is odd if and only if the number if�1 terms in the corresponding (+1=� 1)-vector is odd. This corresponds toa product = �1.12.10. If the polynomial q contains a term of the form y2i , then we canreplace that term by 1, since we are only interested in the polynomial foryi 2 f�1; 1g. Thus exponents greater than 1 are unnecessary.12.11. Using Stirling's formula we can show that �2nn � � 22np�n From this itfollows that (n+pn)=2Xi=0 �ni� = n=2Xi=0 �ni�+ (n=2)+(pn=2)Xi=(n=2)+1 �ni�� 122n + (pn=2)� nn=2�� 122n + (pn=2) 2np�n=2< 0:9 � 2n :

Solutions 26512.12. Since yi 2 f�1;+1g,q(y1; : : : ; yn) �Yi 62T yi = nYi=1 yi �Yi 62T yi= Yi2T yi �Yi 62T y2i= Yi2T yi :12.13. We have already shown an upper bound of O(log(s=")�logt(s)) for thedegree of an approximating polynomial. Now treat t as a (yet undetermined)function of n. By comparison with the lower bound pn=2 (for the degree ofan approximating polynomial for PARITY) we see that for certain constantsd and e, it must be that e logdt n � pn. Solving for t yields t =
(lognlog logn).12.14. Let G 2 AC0 via the constant depth bound t0 and the polynomialsize-bound p0. If we replace the �ctitious G-gates in the reduction circuit withthe AC0 realization of G, we get an AC0 circuit for F of depth � t � t0 andsize � p(n) � p0(p(n)).12.15. The majority function is a special case of threshold functionTk(x1; : : : ; xn), where Tk(x1; : : : ; xn) = 1 exactly if at least k of the xi'shave the value 1. So maj(x1; : : : ; xn) = Tdn=2e(x1; : : : ; xn).In the other direction, the majority function can also simulate arbitrarythreshold functions. Suppose, for example, that k < n=2. ThenTk(x1; : : : ; xn) = maj2(n�k)(x1; : : : ; xn; 1; : : : ; 1| {z }n�2k) :If k > n=2, thenTk(x1; : : : ; xn) = maj2k(x1; : : : ; xn; 0; : : : ; 0| {z }2k�n):We can also construct the Exact-k functions from the functions Tk. Ek is1 if and only if exactly k of the xi's have the value 1.Ek(x1; : : : ; xn) = Tk(x1; : : : ; xn) ^ Tn�k(x1; : : : ; xn)= Tk(x1; : : : ; xn) ^ Tk+1(x1; : : : ; xn) :Finally, we get the parity function via the following circuit of constantdepth. (In the diagram below, assume that n is odd and thatx = (x1; : : : ; xn; x1; : : : ; xn).)

266 Solutions
E1 E3 En�2 En66666666x x x x
�� ��OR�� �������������* @@@@I HHHHHHHY

6
Analogous arguments can be used to show that all symmetric functionscan be reduced to majority by AC0-reductions.12.16. If ai is a boolean function in the variables S � fx1; : : : ; xng, jSj < n,then ai can be written in (unabbreviated) disjunctive normal form. Thenai = 1 if and only if exactly one clause of the disjunction is true. Since atmost one clause is true, we can get rid of the disjunction and feed the outputsof the ANDs (weighted with the w0is) directly into the threshold gate.12.17. In polynomial p the monomials with i variables have coe�cients�1; : : : ; �(ni). So every such monomial in polynomial q has coe�cient (ni)Xi=1 �i.13.1.Let x1; : : : ; xn be the common variables of F and G. We can give a truthtable for H by �rst giving \simpli�ed" truth tables for F and G that onlyconsider the common variables x1; : : : ; xn. We place a value of 0 (or 1) in thetruth table whenever the values assigned to x1; : : : ; xn are already su�cientto determine the truth value of F or G. We place a ? when the value dependson the assignment to the remaining variables.For formulas F and G, for which F ! G not every combination of 0; 1; ?is possible. For example, the combination F = ? and G = ? is not possible,since this would mean that there exists an assignment (of all variables) thatmakes F true but G false, contradicting F ! G.The following table shows all possible combinations of values for F andG along with the correct choice for the formula H . This demonstrates that aformula H exists. F H G0 0 00 0 ?0 0 or 1 11 1 1? 1 1

Solutions 267See also� G.S. Boolos, R.C. Je�rey: Computability and Logic, Cambridge Univer-sity Press, 2nd edition, 1980.13.2. In order to be able to distinguish the encodings of occurrences of dis-tinct variables we need a certain number of bits, and this number increaseswith the number of variables. With 1 bit we can distinguish at most 2 vari-ables; with 2 bits, at most 4, etc. In order to write down m di�erent variables,we need at least
(m logm) bits. So in a formula coded with n bits, onlym = O(n= logn) variables can occur.13.3. Suppose an arbitrary assignment of all variables (x, y, and z variables)in Fn and Gn is given. If this assignment makes Fn true, x 2 A, since Fn isa Cook formula for \A 2 NP." Since Gn is a Cook formula for \A 2 NP,"G(x; z) = 0 and :G(x; z) = 1. So Fn ! :Gn.13.4. We must show that x 2 A , Hn(x) = 1. If x 2 A, then Fn issatis�able. So there is an assignment to the x; y-variables with Fn(x; y) = 1.Since Fn ! Hn Hn(x) = 1.On the other hand, if x 62 A, then there is an assignment to the x; z-variables with Gn(x; z) = 1. Since Hn ! :Gn (equivalently: Gn ! :Hn),:Hn(x) = 1, i.e., Hn(x) = 0. (In fact, we have Fn $:Gn.)13.5. Choose A1 = A and A2 = A.13.6. Let Fn(x; y) be the Cook formula for \A1 2 NP" and let Gn(x; z) theCook formula for \A2 2 NP." Since A1 and A2 are disjoint, Fn ! :Gn. Ifan interpolant of Fn and :Gn has polynomial-size circuits (i.e., int(Fn; Gn)is polynomial in n), then A1 and A2 are PC-separable.13.7. Suppose that the last two statements are false i.e., NP = coNP andinterpolants can be computed in polynomial time. We will show that P = NP.Since NP = coNP, both SAT and SAT are NP-complete. For SAT and SATthere are corresponding Cook formulas Fn(x; y) and Gn(x; z), and Fn !:Gn. In polynomial time (in n) we can compute their interpolant Hn(x),for which x 2 SAT , Hn(x) = 1. From this it follows that SAT 2 P, soP = NP.13.8. Consider the languageA = fhH(x; y); ai j H is a boolean formula and a an assign-ment to the x-variables such that thereis an assignment to the y-variables thatmakes H trueg :This language A is in NP and has by hypothesis polynomial-size circuits.This means there is a sequence of circuits c1; c2; : : : of polynomial size suchthat

268 SolutionscjhH;aij(hH; ai) = 1 () hH; ai 2 A () 9bH(a; b) = 1 :Now let F and G be two formulas of length n with F ! G. (F = F (x; y)and G = G(x; z); i.e., x is the set of common variables.) Let cF be a circuit(family) for A as above but with the �rst parameter �xed equal to F (H = F).Then cF (a) = 1 () 9b F (a; b) = 1. We claim that cF is a circuit for aninterpolant of F and G. It is clear that every assignment that satis�es F alsomakes cF = 1. Now let a be an assignment such that cF (a) = 1. Then thereis an assignment b such that F (a; b) = 1. Since F ! G, it must be the casethat for every assignment d, G(a; d) = 1. Thus cF ! G.14.1. Every branching in a branching program of the formn- ���*HHHjxixican be locally replaced with the following sub-circuit:----xixi ����--^̂Finally, all connections that lead into an accepting node are joined togetherin one big OR-gate.14.2. BP-INEQ 2 NP: The following describes a nondeterministic Turingmachine M for BP-INEQ:INPUT hB;B0i;GUESS x1; : : : ; xn 2 f0; 1g;IF B(x1; : : : ; xn) 6= B0(x1; : : : ; xn) THEN ACCEPTELSE REJECTENDBP-INEQ is NP-hard: The goal of this proof is to construct from a predicatelogic formula, two branching programs that are inequivalent if and only ifthe formula is satis�able. Consider an example: Let F = (x1 _ :x2 _ x4) ^(x3 _ x2 _ :x1). This formula is satis�able. From this we must constructa branching formula BF with BF � F . BF is made up of subgraphs thatrepresent the individual clauses of F :

Solutions 269��� ��� ��� ���- --���? ����	 ���������� x1 x2 x4x1 x2 x4��� ��� ���- -x3 x2 x1
�������x3 x2 x1

- -? ����	 ����������The second branching program will be a program BU that computes the0-function.If F 2 SAT, then there is an assignment on which BF computes thevalue 1. Since BU computes 0 on every input, these branching programs areinequivalent, i.e. (BF ; BU) 2 BP-INEQ. On the other hand, if BF and BUare di�erent, then there is an input on which BF computes the value 1. SinceBF � F this is also a satisfying assignment for F . Altogether we have:F 2 SAT () (BF ; BU) 2 BP-INEQ :It is clear that from any formula in conjunctive normal form one canconstruct a branching program BF . If F consists of k clauses, then BF has atmost 4k + 1 nodes. The size of BU is a constant for all inputs. For example,BU could be a branching program that consists of a single rejecting terminalnode. So the construction of BF and BU from the formula F can be carriedout in polynomial time.Note that the branching program BF is not, in general, one-time-only andthat this is signi�cant for the proof.14.3. The polynomials in the individual nodes are:p1 = 1p2 = x1p3 = (1� x1) + x1x2 + x1(1� x2)x3p4 = x1(1� x2)p5 = (1� x1)x2 + x1x22 + x1(1� x2)x2x3p6 = x1(1� x2)(1� x3) + (1� x1)(1� x2)+x1x2(1� x2) + x1(1� x2)2x3pB = p6

270 SolutionsTruth table: x1 x2 x3 p1 p2 p3 p4 p5 p6 B0 0 0 1 0 1 0 0 1 10 0 1 1 0 1 0 0 1 10 1 0 1 0 1 0 1 0 00 1 1 1 0 1 0 1 0 01 0 0 1 1 0 1 0 1 11 0 1 1 1 1 0 0 1 11 1 0 1 1 1 0 1 0 01 1 1 1 1 1 0 1 0 0As one can see, pB = B. Now we prove the claim:Let x1; : : : ; xn 2 f0; 1g and let Vm be the set of all nodes in B thatare reachable from vstart in exactly m steps. Then for all v 2 Vm:pv(x1; : : : ; xn) =8<:1 if v is reachable on the mth stepof B(x1; : : : ; xn),0 otherwise.Base case. m = 0 : pvstart = 1 pInductive step. Assume the claim is valid for all nodes that can be reachedin � m steps.Let v be a node in B that is reached in step m+1 step of the computationand let the nodes v1; : : : ; vl be the predecessors of v. Every assignment tox1; : : : ; xn determines exactly how the branching program is traversed. v isreached in step m+1, then there is exactly one node vi; 1 � i � l, which wasvisited in the m-th step. By the inductive hypothesis, on input x1; : : : ; xn,pv = �1 � pv1|{z}=0 +�2 � pv2|{z}=0 + : : :+ �i�1 � pvi�1| {z }=0+�i � pvi|{z}=1 +�i+1 � pvi+1| {z }=0 + : : :+ �n � pvn|{z}=0 = �i :So the value of pv is completely determined by �i. There are two possibilitiesfor the label of the edge (vi; v):� xj = 0, in which case pv = �i = 1� xj = 1.� xj = 1, in which case pv = �i = xj = 1.Since every computation of B halts in some terminal node ve after �nitelymany steps, pve = 1. Finally, pB is the sum of all polynomials of acceptingterminal nodes so pB(x1; : : : ; xn) = B(x1; : : : ; xn) :

Solutions 27114.4. Consider the following counterexample: Here are two branching pro-grams B2 and B02 for the function f(x1; x2) = :x1 _ x2:��������
12 ��������

34 ����5- ��������?
-?x1x1 x2x2B2: pB2(x1; x2) = 1� x1 + x1x2-

��������
12����?x1 ��������

56����?x2��������
34- -�����	�����	 x1 x1x2x1B02: pB02(x1; x2) = 1� x21 + x21x2-

B2 and B02 are equivalent, but pB2 and pB02 are not identical: pB2(3; 0) 6=pB02(3; 0).14.5. The proof is by induction on the number of variables, n.If n = 1, then p and q are lines. If they are not identical, then they canonly intersect in one point, so they must be di�erent in at least jSj�1 points.Now suppose n > 1. Thenp(x1; : : : ; xn) = 1Xi1=0 : : : 1Xin=0 ai1;:::;in � xi11 � : : : � xinn= x01|{z}=1 � 1Xi2=0 : : : 1Xin=0 a0;i2;:::;in � xi22 � : : : � xinn !| {z }=:p0(x2;:::;xn)+x11 � 1Xi2=0 : : : 1Xin=0 a1;i2;:::;in � xi22 � : : : � xinn !| {z }=:p1(x2;:::;xn)= p0(x2; : : : ; xn) + x1 � p1(x2; : : : ; xn) :Analogously, q(x1; : : : ; xn) = q0(x2; : : : ; xn) + x1 � q1(x2; : : : ; xn).Since p 6= q, either p0 6= q0 or p1 6= q1. First we handle the case whenp1 6= q1. By the inductive hypothesis, p1 and q1 di�er on at least (jSj�1)n�1

272 Solutionspoints. We will show that for every (x2; : : : ; xn) there is at most one choicefor x1 such that p and q are equal on the input (x1; x2; : : : ; xn). Solving theequationp0(x2; : : : ; xn) + x1 � p1(x2; : : : ; xn) = q0(x2; : : : ; xn) + x1 � q1(x2; : : : ; xn)for x1 we get: x1 = p0(x2; : : : ; xn)� q0(x2; : : : ; xn)q1(x2; : : : ; xn)� p1(x2; : : : ; xn) ;which is only a solution if the value is in S. There are at least jSj � 1 choicesfor x1, which lead to di�erent values of p and q. So altogether there are atleast (jSj � 1) � (jSj � 1)n�1 = (jSj � 1)n choices for (x1; : : : ; xn) that lead todi�erent values of p and q.If p1 = q1, but p0 6= q0, then the value of x1 doesn't matter for the equalityof p and q. So in this case there are actually at least jSj(jSj � 1)n�1 valuesfor (x1; : : : ; xn) that make p and q di�erent.14.6. Let S = f0; 1g in Theorem 14.2.14.7. The polynomials pB and pB0 from one-time-only branching programsare multi-linear. By Exercise 14.3, they must agree on all values in f0; 1gn =Sn. By the previous exercise it follows that pB = pB0 .14.8. B and B0 are equivalent, so pB = pB0 for all x1; : : : ; xn 2 f1; : : : ; 2ng.Thus Pr[M(B;B0) rejects] = 114.9. Let p be the probability that the algorithm accepts. By Theorem 14.2,p � (jSj � 1)njSjn = (2n� 1)n(2n)n = (1� 12n)n � 12 :More precisely, it can be shown that limn!1(1� 12n)n =q 1e = 0:6065::: .14.10. We will describe a reduction that maps each boolean formula F inconjunctive normal form to two one-time-only branching programs B1 andB2, such that F is satis�able if and only if there is an argument tuple y withfB1(y) = 1 and fB2(y) = 0. Expressed di�erently: F is unsatis�able if andonly if fB1(y) � fB2(y) for all y.Let F be a CNF-formula with k clauses and in which the n variablesx1; : : : ; xn occur. The variable set y for each of the branching programs isy11 : : : y1ky21 : : : y2k. . .yn1 : : : ynkThe (intended) connection between a satisfying assignment x = (x1; : : : ; xn)for F and an assignment y = (y11; : : : ; ynk), for which B1(y) = 1 and B2(y) =0 is the following:

Solutions 273xi = 1) �yij = 1 if xi occurs in clause j,yij = 0 otherwise;xi = 0) �yij = 1 if :xi occurs in clause j,yij = 0 otherwise.The basic construction of B1 is indicated in the following sketch:- h���@@R hh-- hh� � �� � � hh@@R���h���@@R � � � @@R���h���@@R hh-- hh� � �� � � hh@@R��� fji = ni = 1Undrawn edges are to be understood as leading to a rejecting terminal node.For every i = 1; : : : ; n, there are two separate paths between the connectingnodes. The k edges on the upper path are labeled with yij (j = 1; : : : ; k) ifxi occurs in clause j, otherwise with yij . The labels on the lower path aredetermined analogously, but with :xi playing the role that xi played in theupper path.For example, the formulaF = (x1 _ :x2) ^ (x2) ^ (:x1 _ :x2)maps to the following branching program B1:- h����@@@R hh -- hh@@@R���� h����@@@R hh -- hh@@@R���� gjy23y23y22
y22y21y21y13y13y12

y12y11y11Clearly, there are 2n paths from the start node to the accepting terminalnode. And since the branching program is one-time-only, there are 2n assign-ments to y for which B1(y) = 1. These assignments can be assigned to 2noriginal assignments for x as described above.Every satisfying assignment for F corresponds to an assignment to y withthe property that, in the arrangement of the yij 's illustrated above, everycolumn contains a 1. The following branching program B2 will describe ally-assignments except those that correspond to satisfying assignments to Fin this way, that is all assignments for which there is some column with no1's in it.

274 Solutions- i - i � � � i - inyi1 (i = 1; : : : ; n)ZZZ~ ZZZ~ ZZZ~i - i � � � i - inyi2 (i = 1; : : : ; n)ZZZ~ ZZZ~ ZZZ~
i - i � � � i - inyik (i = 1; : : : ; n)

?
?. . . ?Notice that B2 only depends on k and n, and not on the inner structure ofF itself.For example, the formula F from above, for which k = 3 and n = 2,results in the following branching program B2:��� ��� j������ ��� j������ ��� ���j--?? - ---ZZZZZ~ ZZZZZ~

- y11 y21y21y11 y21 y22y22y21 y13 y32Now F is satis�able if and only if there is an assignment y with B1(y) >B2(y), so the inclusion problem for one-time-only branching programs iscoNP-complete.14.11. This is because f is critical, that is, for ever x with f(x) = 1 andevery x0 that di�ers from x in any bit, f(x0) = 0. So if some path in thebranching program accepts x but does not query every bit, then that pathcannot distinguish between x and x0, and will incorrectly accept x0. Thiscontradicts the assumption that B correctly computes the function f .

Solutions 27514.12. Suppose k(x) = k(x0). Since the polynomials associated with x andx0 are di�erent, by the Interpolation Theorem, this di�erence must showitself in any n=3 queries that are answered yes, since each such determinesa point on the polynomial. So the x-path and the x0-path must be di�erentboth above and below k(x) = k(x0):'
&
$
%
h?
??m mhh
xx0 x x0

By following the x-path above k(x) and the x0-path below, we get a newaccepting path, corresponding to an assignment x̂ for which f(x̂) = 1. This inturn corresponds to another polynomial in POL. (There can be no conictingde�nitions for x̂ since B is one-time-only.) But this is impossible, since thepolynomials corresponding to x and x̂ cannot be equal in n=2 � n=3 placesand di�erent in others.15.1. If P = NP, then all languages (except for ; and ��) in NP are alsoNP -complete. In particular, all �nite sets are NP-complete. But an in�nitelanguage such as SAT can not be isomorphic (and, therefore, certainly notP-isomorphic) to a �nite language.15.2. Let x be a boolean formula and let y = y1y2 : : : yk be an arbitrarystring (WLOG over f0; 1g�). Now letpSAT (x; y) = x ^ (z _ :z) ^ uy1 ^ � � � ^ uyk ;where z; u1; : : : ; uk are new variables that do not occur in x, y0 means y andy1 means :y. It is clear that pA is polynomial-time computable and that thisformula is satis�able if and only if x is satis�able. Furthermore, the formulais longer than jxj + jyj. Injectivity in argument y is also clear, and from aformula pA(x; y) as above it is easy to reconstruct y. (This is the reason forthe variable z { it allows us to detect where the y part of the formula begins.)So dA also exists as required.15.3. Let A �Pm B via f and B �Pm A via g. Now putf 0(x) = pB(f(x); x) and g0(x) = pA(g(x); x) :By the properties of pA and pB f 0 and g0 are correct polynomial-time com-putable reductions from A to B and from B to A, respectively. Furthermore,

276 Solutionsjf 0(x)j > jf(x)j + jxj � jxj and jg0(x)j > jg(x)j + jxj � jxj. The inversefunctions for f 0 and g0 are dB and dA and are therefore polynomial-timecomputable.15.4. Let A �Pm B via the injective function f and B �Pm A via the injectivefunction g. Furthermore, suppose that jf(x)j > jxj, jg(x)j > jxj, and that thefunctions f�1 and g�1 are polynomial-time computable. We need to de�nea bijective function h that is a reduction from A to B. For the de�nition ofh(x) there are essentially two choices available: f(x) or g�1(x). (Of course,the latter choice only exists if x is in the range of g.)Sketch:
--t������ tSSSSSwt

�t���� xf�1(g�1(x))

g�1(x) f(x)
By applying the functions g�1 and f�1 we can proceed in a zig-zag mannerbackwards from x until we arrive at a string that is not in the range of g orf , respectively. (In the example above f�1(g�1(x)) is no longer in the rangeof g, so the zig-zag chain ends on the lower line.) Now de�neh(x) := � f(x); if the chain starting with x ends on the lower lineg�1(x); if the chain starting with x ends on the upper lineSince the functions f and g are length-increasing, no zig-zag chain can belonger than jxj, so h can be computed in polynomial time.Next we must show that h is a bijection. For the proof of injectivity, letx and y be distinct strings such that h(x) = h(y). Since f is injective, thiscan only happen if h(x) = f(x) and h(y) = g�1(y) (or vice versa). But thenx and y are in the same zig-zag chain and the de�nition of h would eitherhave used f both times or g�1 both times. This is a contradiction.For the proof of surjectivity, let z be an arbitrary string. We must showthat z is in the range of h. Consider a zig-zag chain starting at z (in theupper line). If this chain ends in the upper line (including the case that z isnot in the range of f), then for x = g(z), h(x) = g�1(x) = z. If the chainends in the lower line, then x = f�1(z) must exist and h(x) = z.The inverse function for h is also bijective and can be de�ned using asimilar case distinction, so it is also polynomial-time computable.

Solutions 27715.5. Let y be the encoding of some satis�able formula 'y, and let l = jyj.For any x, the formula (x) = 'y ^ (x _ :x)is also satis�able. Let f(x) be the encoding of (x) as a string. Then under areasonable encoding scheme, jf(x)j � jyj+4jxj+k = 4jxj+l+k = 4jxj+C, forsome constants k and C. Thus there are at least 2m strings of length 4m+Cin SAT, i.e., for large enough n, there are at least 2(n�C)=4 = 2�C=22n=4strings of length at most n in SAT .15.6. By the previous exercise, SAT contains at least "2�n strings of length nfor some constants � > 0 and " > 0. If SAT were P-isomorphic to a languageS, where S contained only � p(n) strings of length at most n, then therewould be a bijective function f mapping SAT to S. Since f is polynomial-time computable there must be a polynomial q such that jf(x)j � q(jxj).From this we get the following contradiction: f maps 2�n strings injectivelyinto p(q(n)) possible range elements.15.7. SAT �Pm LeftSAT via the reduction F 7! (F; �).LeftSAT �Pm SAT via the reduction (F; a1 : : : ai) 7! F (x1; : : : ; xn) ^(a1 : : : ai �� x1 : : : xn), where the formula (a1 : : : ai �� x1 : : : xn) is de�ned asfollows: Let E = fj 2 f1; : : : ; ig j aj = 1g and N = fj 2 f1; : : : ; ig j aj = 0g.Then (a1 : : : ai �� x1 : : : xn) = ĵ2E0@xj _ _l2N;l<j xl1A :Another way to show that LeftSAT �Pm SAT is simply to observe thatLeftSAT is in NP and that SAT is NP-complete.15.8. Let b1 : : : bi be an initial segment of b, which we assume by inductionbelongs to T . By the construction of U , b1 : : : bi0 and b1 : : : bi1 are added toU , so the correct initial section of b of length i+ 1 { let's call it b0 { is in U .If (F; b0) has the same g-value as some other string in U , then the smallerof the two is stricken, but this cannot be b0, since it is the largest elementof U for which (F; b0) 2 LeftSAT and g is a correct reduction. So after the�rst reduction of U , each string in U has a distinct g-value, and b0 is amongthem. If U contains more than m = p(q(jF j)) strings, then U is restricted tothe �rst m of these. But this must include b0, since at most m possible valuesof g are available for elements of LeftSAT (including (F; b0)):

278 Solutions

TTTTTTT
TTTTT������������

EEEEEEEEEEEEb 1n0n
�
s s s s s s s

The sketch above shows a possible distribution of the strings in U followingthe �rst reduction step.16.1. Suppose �Pi = �Pi . Let L 2 �Pi+1. Then there is a language L0 2 �Piwith L = fx j 9y hx; yi 2 L0g :By assumption, L0 is also in �Pi . LetL0 = fhx; yi j 9z18z2 : : :Qzi hx; z1; : : : ; zii 2 Ag ;where A is a language in P. Then we haveL = fx j 9y hx; yi 2 L0g= fx j 9y9z18z2 : : : Qzi hx; y; z1; : : : ; zii 2 Ag= fx j 9u8z2 : : : Qzi [u = hy; z1i ^ hx; y; z1; : : : ; zii 2 A]g :The expression in square brackets is a predicate in P, so L in �Pi .Now suppose that �Pi = �Pi+1. We show by induction on k that for allk � 1, �Pi = �i+k. From this it follows that PH = �Pi . The base case ofthe induction is clear. For the induction step let L be a language in �Pi+k+1.Then for some language L0 2 �Pi+k ,L = fx j 9y hx; yi 2 L0g :By the inductive hypothesis L0 2 �Pi , so L0 2 �Pi . From this it follows thatL 2 �Pi+1. By assumption �Pi+1 = �Pi , so L 2 �Pi .Finally, suppose PH = �Pi . Since �Pi � PH it is immediate that �Pi ��Pi , so �Pi = �Pi .16.2. Choose a language over the one-element alphabet f1g that is not in P.This language has polynomial-size circuits (for each n design a circuit thaton input 1n outputs either 1 or 0 according to whether or not 1n 2 L). Such

Solutions 279a language L that is not in P (in fact, not even computable) can be easilyde�ned by diagonalization, for exampleL = f1n j the n-th polynomial-time machine on input1n, does not acceptg .16.3. If L has polynomial-size circuits then the corresponding circuitsc1; c2; c3; : : : can be coded in a sparse set:S = fh1n; yi j y is an initial segment of cng :With this language as oracle, we can use polynomially many oracle queriesto reconstruct the circuit cjxj and then simulate the circuit on x.On the other hand, if L 2 PS for some sparse set S, then the con�gura-tion transition of the Turing machine can be suitably coded into a circuit,demonstrating the L has polynomial-size circuits. Details of this can be foundin� U. Sch�oning: Complexity and Structure, Springer, 1986.� I. Wegener: The Complexity of Boolean Functions, Teubner-Wiley, 1987.� J. K�obler, U. Sch�oning, J. Tor�an: The Graph Isomorphism Problem: ItsStructural Complexity, Birkh�auser, 1993.16.4. Self-reducibility of SAT means that can �nd a witness (a satisfyingassignment) for a formula F 2 SAT by recursively testing other formulasfor membership in SAT in the following manner: To determine the valueof a variable x in a satisfying assignment for F temporarily assign it thevalue 1. This produces a new formula with fewer variables. If this formula issatis�able, then there is a satisfying assignment for F in which x = 1, else wetry x = 0. By this same recursive procedure we get a satisfying assignmentfor the modi�ed formula with x = 1 or x = 0. This combined with x = 0 isa satisfying assignment for F .Now we want to design a circuit that realizes this method. Suppose weare given polynomial-size circuits for SAT. We will use the following notationfor these circuits: """"HHHH [F 2 SAT]F - -The thick lines indicate a bus of wires. The input to this circuit is the formulaF , coded as binary string, and the (single) output is 1 if and only if F 2 SAT.We also need another simply-constructed, polynomial-size circuit, whichwe will denote by

280 Solutionsa1 : : : aiF Fx1=a1;:::;xi=ai- -??
This circuit has n + i inputs and (WLOG) n outputs. The inputs to thiscircuit are the encoding of F and i additional bits a1; : : : ; ai. The output isan encoding of the formula that results from substituting the values a1; : : : aiinto the formula F for the variables x1; : : : ; xi. The details of this circuitdepend on the encoding used for formulas.The desired witness circuit is built as follows:F 1 HHH��� y11 HHH��� y21 HHH��� y3... . . .

- ? - ?? - ??? ------
16.5. (�) Let x 2 L. Then for every y, the formula f(hx; yi) is satis�able.Choose for c the appropriate polynomial-size witness circuit for SAT, whichexists by the assumption and the previous exercise. Then c will produce asatisfying assignment for every input F = f(hx; yi) 2 SAT .(�) If y = c(f(hx; yi)) is a satisfying assignment for F = f(hx; yi), thenF is satis�able (regardless of how y came to be).16.6. It is clear that all languages in BHi, i = 1; 2; 3; : : : are contained inBH. For the reverse direction, let L be a language in BH. Then there is a�nite expression that represents the application of the intersection, union,and complement operators used to build L. We will show by induction on thestructure of this expression that L is in BHk for some k � 1. By DeMorgan'slaws we can bring all complement operations to the \inside" of the expression,so that we only need to consider intersection and union over NP and coNPlanguages. All NP and coNP languages are in BH2. Furthermore, observe thatall languages in BHk with k even can be expressed in the formA = (A1 �A2) [(A3 �A4) [� � � [(Ak�1 �Ak) ;

Solutions 281where each Ai is a language in NP. It only remains to show that the intersec-tion of any two such languages A and A0 can again be expressed in this form.Now we can apply the distributive law to \multiply out" the expression anduse the equivalence(Ai �Ai+1) \ (A0j �A0j+1) = (Ai \ A0j)� (Ai+1 [A0j+1)and the fact that NP is closed under intersection and union to see that theresult has the desired form. (This result is due to Hausdor� (1928)).17.1. Let M be a probabilistic algorithm for \L 2 RP," and let M 0 be aprobabilistic algorithm for \L 2 RP." Then the following algorithm has thedesired behavior:INPUT x;Simulate M on x; let the result be y 2 f0; 1g;Simulate M 0 on x; let the result be y0 2 f0; 1g;IF (y = 1) AND (y0 = 0) THEN ACCEPTELSE IF (y = 0) AND (y0 = 1) THEN REJECTELSE OUTPUT \don't know"In the other direction, from an algorithm of the type given above (withthree possible outcomes: accept, reject, or don't know) we can get an RP-algorithm for L (or for L) by making the following modi�cations to the algo-rithm:� In the �rst case, to show L 2 RP: \don't know" becomes \reject."� In the second case, to show L 62 RP: \don't know" and \accept" become\reject," and \reject" becomes \accept."17.2. Let L 2 ZPP. Then L can be computed by a polynomial time-boundedprobabilistic machine M0 as in the previous exercise. We use this machine asa sub-program in the following machine M1:INPUT x;REPEATy := result of simulation of M0 on x;UNTIL y 6= \don't know";IF y = accept THEN ACCEPTELSE REJECT ENDLet " be the (least) probability that the machine M0 gives a de�nite answer(accept or reject). The expected number of passes through the repeat-untilloop of M1 is then 1Xi=1 " � (1� ")i�1 � i = 1" :

282 SolutionsSo the expected running time is polynomial. In fact, expected running timewould still be polynomial even if " were dependent on n in such a way that" = "(n) =
(1nk).In the other direction, let M be the algorithm with expected polynomialrunning time p(n).By Markov's inequality, the probability that the running time is actuallymore than 2p(n) (twice the expected running time) is at most 1=2 (otherwisethe \slow" running times would already force the expected running time tobe more than p(n)). So if we simulateM for 2p(n) steps, we get an algorithmof the type in the preceding exercise, with a probability constant of 1=2,i.e. our new algorithm answers \don't know" whenever M has not answeredwith \accept" or \reject" within 2p(n) steps.17.3. The probability that we fail to get acceptance t times (provided theinput is in L) is at most (1 � ")t. If we want (1 � ")t � 2�n, we see thatt � �nlog2(1�") =
(n") is su�cient.17.4. If we repeat a Bernoulli trial t times independently, where each of thetrials has a probability of success, and let X be a random variable thatcounts the number of successes, then the following approximations are validfor r � 0: Pr[X � t � r] � e�r2=(4t(1�)) � e�r2=t ;and Pr[t �X � r] � e�r2=(4t(1�)) � e�r2=t ;since (1�) � 1=4. Derivations of these (or similar) approximations can befound in many places, for example in� N. Alon, J.H. Spencer: The Probabilistic Method, Wiley, 1992, 233�.� H. Cherno�: A measure of the asymptotic e�ciency for tests of a hypoth-esis based on the sum of observations, Annals of Mathematical Statistics23 (1952), 493{509.� Cormen, Leiserson, Rivest: Introduction to Algorithms, MIT Press, 1990,121�.� T. Hagerup, C. R�ub: A guided tour of Cherno� bounds, InformationProcessing Letters 33 (1989/90), 305{308.� E. Kranakis: Primality and Cryptography, Wiley-Teubner, 1986, 91�.� C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994,258�.� E.M. Palmer: Graphical Evolution, Wiley, 1985, 133�.� P.E. Pfei�er: Concepts of Probability Theory, Dover, 1978, 281�.

Solutions 283Applying these inequalities in our case yields:�tXi=0 �ti� � i � (1�)t�i = Pr[X � �t � "t=2] � e�"2t=4 � 2�
(t) :To get an error probability of 2�n, we must choose t � (c="2) � n where c isa suitable constant.The approximations in the case x 62 L are similar:tXi=�t�ti� � �i � (1� �)t�i = Pr[�t�X � "t=2] � e�"2t=4 � 2�
(t) ;where � = �� "=2.17.5. Deterministic polynomial time computations (with a �xed inputlength) can be transformed into polynomial-size circuits. (Details can befound in the book by K�obler, Sch�oning, and Tor�an.) If we �x a fortunatechoice of the random variable z, then our probabilistic algorithm becomesa deterministic algorithm and we can apply the same principle to constructpolynomial-size circuits.17.6. (For an explanation of self-reducibility, see Topic 16, the book byK�obler, Sch�oning, and Tor�an.)Let M be a BPP-algorithm for SAT , which we are assuming exists. Afterprobability ampli�cation, assume the error rate is at most 2�n. Now to showthat SAT 2 RP we use the following probabilistic algorithm (the only prob-abilistic part is the use of M as a sub-routine). The algorithm makes use ofan array a1; : : : ; an of bit values.INPUT F (x1; : : : ; xn); (F is a formula in the variables x1; : : : ; xn)FOR i := 1 TO n DOIF M(F (a1; : : : ; ai�1; 1; xi+1; : : : ; xn)) = 1 THEN ai := 1ELSE ai := 0 ENDEND;IF F (a1; : : : ; an) = 1 THEN ACCEPTELSE REJECT ENDIf F 62 SAT, then this algorithm will always reject. If F 2 SAT, then withprobability at least (1� 2�n)n � 1=2 a satisfying assignment a1 : : : an for Fis constructed by the algorithm, which causes it to accept. So this algorithmdemonstrates that SAT 2 RP.17.7. Let x and y be arbitrary distinct element from f0; 1gr. ThenPr[h(x) = h(y)]= Xz2f0;1gs Pr[h(x) = z ^ h(y) = z]

284 Solutions= Xu2[0;p�1]Xu0 Pr[(ax + b) mod p = u ^ (ay + b) mod p = u0]� p � dp=2se � 1p2� (p=2s + 1) � 1=p= 1=2s + 1=p� 1=2s + 1=2r :Here the last sum runs over all u0 2 [0; p� 1] with u0 � u (mod 2s).17.8. Let h1; h2 2 H and x1; x2 2 X be chosen uniformly at random Weneed an upper bound for Pr[(h1; h1(x1)) = (h2; h2(x2))], i.e for Pr[h1 =h2^h1(x1) = h2(x2)]. This is exactly 1=jH j multiplied by Pr[h(x1) = h(x2)],where h 2 H and x1; x2 2 X are chosen at random. If x1 6= x2, then thisprobability { by the de�nition of almost universal { is at most 1=2s + 1=2r.Since jX j � 2l, the probability for x1 = x2 is at most 1=2l. So we can givean upper bound of1jH j � (1=2s + 1=2r + 1=2l) � (1 + 2=22e) � 1jH j2s :17.9. Let X be the set of 0-1 sequences of length k with not more than k=21's. Let D be a distribution that is "-similar to the (p; 1� p) distribution (oflength k), and let E be the \correct" (p; 1� p)-distribution. We approximateas follows: PrD(X) � PrE(X) + "= k=2Xi=0 �ki�pi(1� p)k�i + "� 2�
(k) + " :So it must be that " = 2�
(k).17.10. Let X be an arbitrary set of 0-1 strings. ThenjPr[t(F) 2 X]� Pr[H 2 X]j� jPr[t(F) 2 X]� Pr[t(G) 2 X]j+ jPr[t(G) 2 X]� Pr[H 2 X]j� jPr[t(F) 2 X]� Pr[t(G) 2 X]j+ �2� jPr[F 2 t�1(X)]� Pr[G 2 t�1(X)]j+ �2� �1 + �2 :18.1. If for every language A 2 C gilt, the language fhx; yi j x 2 A; y 2��g 2 C, then C � BP.C.

Solutions 28518.2. Let q be an arbitrary polynomial and let A be a language in BP.C. Sofor some language B 2 C and some constants � and ",x 2 A =) Pr[hx; yi 2 B] � �+ "=2 ;x 62 A =) Pr[hx; yi 2 B] � �� "=2 :In order to amplify the probability to reach an error rate of at most 2�q(n), weuse the well-known technique of replacing B with the language B0 describedby the following algorithm.INPUT hx; y1 � � � yti;s := 0;FOR i := 1 TO t doIF hx; yii 2 B THEN s := s+ 1 END;END;IF s > �t THEN ACCEPTELSE REJECT ENDHere t is a linear function in q(jxj).What we need is that this algorithm is \of type C," so that B0 2 C. Sincethis program uses B as a sub-program, it is clear that B0 2 P(B), but thatcharacterization is to coarse, since it would not, for example, apply with theclass NP in the role of C (unless NP = coNP). If we look more closely, we seethat this reduction is actually positive (or monotone). This means that fromB1 � B2 it follows that L(M;B1) � L(M;B2). We will use the notation Posfor this type of reduction, so B0 2 Pos(B). P, NP and many other classes areclosed under Pos(�).18.3. Let A 2 BP.BP.C. Then there are constants � and ", and a languageB 2 BP.C such thatx 2 A =) Pr[hx; yi 2 B] � �+ "=2 ;x 62 A =) Pr[hx; yi 2 B] � �� "=2 :For B 2 BP.C we can apply probability ampli�cation, so there is a languageC 2 C with hx; yi 2 B =) Pr[hx; y; zi 2 C] � 1� "=4 ;hx; yi 62 B =) Pr[hx; y; zi 2 C] � "=4 :Putting this together, we getx 2 A =) Pr[hx; yi 2 C] � �+ "=2� "=4 = �+ "=4 ;x 62 A =) Pr[hx; yi 2 C] � �� "=2 + "=4 = �� "=4 :This shows that A 2 BP.C with the constants � and "=2.

286 Solutions18.4. Let L be a language in Op.BP.C. By the statement of the exercise,there is a language A 2 BP.C, a polynomial p, and a predicate Q such thatx 2 L () Q(x;A�p(n)) ;where n = jxj. For the language A, there is a language B 2 C such that forall y with jyj � p(n),Pr[y 2 A () hy; zi 2 B] � 1� � ;where the probability is over z chosen uniformly at random. Because of prob-ability ampli�cation, we can choose � = 2�p(n)�3. Now it follows thatPr[8y; jyj � p(n) (hy; ziB () y 2 A)] � 1� 2p(n)+12�p(n)�3 = 3=4 :From this it follows thatPr[x 2 L () Q(x;B(y)�p(n))] � 3=4 ;where we are using B(y) to denote the set fx j hx; yi 2 Bg. So L 2 BP.Op.C.18.5. n!=m18.6. X = f hG; �i j G is isomorphic to G1 or to G2 and � 2 Aut(G) g.18.7. Suppose �rst that the strings y and y0 di�er in exactly one bit, say inthe �rst bit: y1 6= y2. For every bit position j = 1; : : : ; b in the result string,h(y)j = aMi=1(hij ^ yi) = � � (h1j ^ y1)and h(y0)j = aMi=1 (hij ^ y0i) = � � (h1j ^ y01) ;where � = Lai=2(hij ^ yi) = Lai=2(hij ^ y0i). WLOG, we may assume thaty1 = 0 and y01 = 1. Then h(y)j = 0 and h(y0)j = m1;j . So h(y0)j = 0 or 1with probability 1=2 for each. Since the bits m1;j are chosen independently,Pr[h(y) = z ^ h(y0) = z] = 2�2b.This argument can easily be generalized to the case where y and y0 di�erin more than one bit.18.8. Choose u1; : : : ; up(n) randomly. We approximate the probability thatthen (the rest of) statement (1) does not hold:Pr[9v (u1 � v 62 E ^ � � � ^ up(n) � v 62 E)]�Xv Pr[u1 � v 62 E ^ � � � ^ up(n) � v 62 E]

Solutions 287=Xv p(n)Yi=1 Pr[ui � v 62 E]=Xv p(n)Yi=1 2�n=Xv (2�n)p(n)= 2p(n) � (2�n)p(n)= 2�(n�1)p(n) < 1 :18.9. Suppose there is a choice of u1; : : : ; up(n), such that for every v thereis an i � p(n) with ui � v 2 F . Partition the set of v's (i.e., f0; 1gp(n))according to the i's: f0; 1gp(n) = V1 [� � � [Vp(n) ;where Vj = fv j uj � v 2 Fg. For at least one j, jVj j � 2p(n)=p(n). From thisit follows that jF j � 2p(n)=p(n) and, therefore, that jF j � (1� 1=p(n))2p(n),which is a contradiction to our assumption (for large enough n).18.10. �P2 = 9.coNP asm.� 9.BP.NP Lm. 18.2� BP.9.NP = BP.NP Th. 18.7��P2 .19.1. P is contained in �P since a P-machine is also a �P-machine.�P is also closed under complementation since every �P-machine can beextended with one \dummy" accepting path, transforming an odd number ofaccepting paths into an even number of accepting paths and vice versa.19.2. Let L be a language in FewP as witnessed by a machineM that has atmost p(n) accepting computation paths. A computation has length at mostq(n), so it can be represented by a string of length q(n). Consider now thefollowing new non-deterministic machine M 0:INPUT x;GUESS m 2 f1; : : : ; p(jxj)g;GUESS y1; : : : ; ym, jyij = q(jxj) with y1 < � � � < ym;IF all yi represent accepting computations THEN ACCEPTELSE REJECT;ENDIf x 62 L, then machine M 0 has 0 (an even number) accepting paths on inputx. On the other hand, if x 2 L, then M has m > 0 accepting paths and M 0has Pmi=1 �mi � = 2m � 1 (an odd number) accepting paths.

288 Solutions19.3. AND-function: f(hF1; : : : ; Fni) = F 01 ^ � � � ^ F 0n. Here F 0i is a versionof the formula Fi with the variables renamed in such a way that no variableoccurs in more than one formula F 0i .OR-function: f(hF1; : : : ; Fni) = F1 _ � � � _ Fn.A NOT-function is nothing other than a polynomial time many-one reduc-tion to the complement of the language. In the case of SAT , such a functionexists if and only if NP = coNP.19.4. It su�ces to show that SAT 2 BP.�P, since BP.�P is closed underpolynomial time many-one reductions. Let M be a probabilistic algorithmthat transforms input formulas F into formulas F 0 withF 2 SAT =) Pr[F 0 2 �SAT] > 1p(jF j) ;F 62 SAT =) F 0 62 �SAT :Now it su�ces to show that for any " > 0 there is a probabilistic algorithmM 0 that transforms F into F 00 withF 2 SAT =) Pr[F 00 2 �SAT] > 1� " ;F 62 SAT =) F 00 62 �SAT :For this all that is needed is to let F 00 consist of t independent formulas ofthe form F 0 (i.e., F 01; : : : ; F 0t) combined using the OR-function h for �SAT:F 00 = h(F 01; : : : ; F 0t). We must still determine how large t must be chosen(depending on p and "). On input F 2 SAT the probability of having no\successes" (F 0i 2 �SAT) in t trials is at most(1� 1p(jF j))t = ((1� 1p(jF j))p(jF j)) tp(jF j) � d tp(jF j) ;where d > 1=e. This probability is supposed to be less than ". From this wesee that t � 1:45 � log(1=") �p(jF j) su�ces. (In fact, from this we see that " caneven be a function of the form 2�q(n) where q is an arbitrary polynomial.)19.5. The following languageA = fF (X;Y) j F is a boolean formula and X and Y sets ofvariables occurring in F such that for at leastone assignment of the X-variables there is anodd number of assignments of the Y -variableswith F (X;Y) = 1 gis clearly complete for 9.�P. It is su�cient to show that A is probabilisti-cally reducible to �SAT. This is achieved by the given probabilistic algorithmwhich transforms F into F 00 if we consider the \halving process" of the algo-rithm to act only on the X-variables and not the Y -variables. From this weget:

Solutions 289F (X;Y) 2 A =) with high probability there are an odd numberof X-assignments for which there are an oddnumber of Y -assignments that make F 00 = 1=) with high probability there is an odd numberof X;Y -assignments with F 00 = 1.F (X;Y) 62 A =) there is no X-assignment for which there isan odd number of Y -assignments that makeF 00 = 1=) there are an even number of X;Y -assignmentswith F 00 = 1.19.6. If �P � PH, then �SAT 2 PH. Thus there exists a k such that�SAT 2 �Pk . Since �SAT is complete for �P and �Pk is closed under many-one reductions, it follows that �P � �Pk . From this we get PH � BP.�P �BP.�Pk � 8.9.�Pk = 8.�Pk = �Pk+1.19.7. Since BP.�P = 8.9.�P the following language is complete for BP.�P:fF (X;Y; Z) j F is a boolean formula and X;Y and Z are setsof variables occurring in F such that for every X-assignment there is at least one Y -assignment forwhich there is an odd number of Z-assignments withF (X;Y; Z) = 1 g :
19.8. a � 0(mod b) =) 9x 2 N bx = a =) 9x 2 N bpxp = ap =) ap �0(mod bp).On the other hand, a � 1(mod b) =) 9x 2 N bx + 1 = a =) 9x 2N (bx + 1)p = ap =) 9x 2 N ap = Ppi=0 �pi�(bx)i =) 9x 2 N ap = 1 + b ��Ppi=1 �pi�bi�1xi� =) ap � 1(mod b).19.9. Every non-deterministic computation tree can be augmented with oneadditional \dummy" accepting path. The class #P is therefore closed under\+1" (in fact, under addition).By attaching two non-deterministic computation trees \one after theother" (in the sense that the second computation is only started in the casethat the �rst one ended in an accepting state) we get a non-deterministiccomputation tree for which the number of accepting paths is precisely theproduct of the numbers of accepting paths on the original trees. This showsthat #P is also closed under multiplication. It is important to note that the(non-deterministic) running times merely add. This means that to computeaccM (x)p(jxj) on input x, we can attach p(jxj) copies of M -computations oneafter another. This results in a running time that increases by a factor ofp(jxj), which is still polynomial provided M ran in polynomial time.

290 Solutions20.1. If in some calculus there is polynomially long proof for the statement\x 2 A," then A 2 NP: On input x one can guess a potential, polynomiallylong proof and verify that it is correct. (For this we need that proofs inour calculus can be veri�ed in polynomial time. This will be the case if, forexample, the individual steps in the proof are easily checked for syntacticcorrectness.)If A is in NP, then one can de�ne the \con�guration transition calculus"corresponding to the NP machine. A t-step proof of x 2 A consists of asequence of legal transitions that result in an accepting con�guration.20.2. Let A be computable by an interactive proof system (in the givensense). Then A 2 NP, since on input x one can simulate the computation ofthe veri�er and nondeterministically guess the communication of the prover.x 2 A if and only if such a nondeterministic algorithm accepts x.20.3. Just as in the case of a nondeterministic or alternating Turing machine,the con�guration transitions of the prover and veri�er can be viewed as a treestructure with the start con�guration as the root. Prover branchings are to beunderstood and evaluated as existential branchings, and veri�er branchings(which are used to generate random numbers) as randomized or probabilisticbranchings.Example.
������99��@@��� ������99��@@���ll

ll,,,, ���
� ��

9>>>=>>>; Veri�er) ProverSuch a computation tree is evaluated as follows: The accepting and re-jecting leaves receive the value 1 or 0, respectively. The value of an existentialnode is the maximum of values of its children, the value of a probabilisticnode is the mean of the values of its children. By the de�nition of an interac-tive proof system for the language A, the root must receive a value � > 2=3if x 2 A and � < 1=3 if x 62 A.The evaluation of such computation tree can be done by a polynomialspace-bounded machine (in exponential time) by evaluating the tree using adepth-�rst, back-tracking algorithm. At no time does this require more spacethan that required to store one path through the tree. Since the tree haspolynomial depth and each node can be stored in polynomial space, this is aPSPACE simulation.

Solutions 29120.4. Suppose that A 2 IP via a veri�er V and a prover P , who is responsiblefor x 2 A. The prover can be regarded as a function P : (x; y1; : : : ; yk) 7! z,where x is the input, yi is the communication between the prover and theveri�er that occurred during (a previous) round i, and z is the the communi-cation from the prover in the next round. We want to show that A is provableby an oracle.In place of the prover, we use the oracle languageB = fhx; y1; : : : ; yk; z0i j P (x; y1; : : : ; yk) = z and z0 is an ini-tial segment of z g .In place of of the veri�er, we have to describe oracle Turing machine M . Mwill behave exactly like the veri�er, except that instead of writing a stringy on the communication tape, M systematically writes strings of the formhx; y1; : : : ; yl; y; z0i (where the yi's are the previous communications) on theoracle tape and uses the oracle B to obtain the information z. If x 2 A, thenit is clear that MB exhibits the same probabilistic behavior as (P; V), andtherefore accepts with probability > 2=3. Now suppose x 62 A and let B be anarbitrary oracle. This corresponds to some prover PB , and sinceMB behavesjust like (PB ; V), it will accept with probability at most 1=3.Now we will try to prove the reverse direction. Suppose A is provable by anoracle A via the machineM and the oracle language B. We want to show thatA 2 IP. In place ofM we use a veri�er V that behaves exactly likeM , exceptthat instead of querying the oracle about a string w, w is communicated tothe prover. The prover associated with the oracle B is de�ned by the functionP (x; y1; : : : ; yk; w) 2 f0; 1g where P (x; y1; : : : ; yk; w) = 1 if and only if w 2B. That is, the prover ignores the input x and all previous communicationand simply tells the veri�er whether or not the last string written on thecommunication tape was a string in B (a single bit).If x 2 A, then it is clear that (P; V) exhibits exactly the same proba-bilistic behavior as MB , and so accepts with probability > 2=3. If x 62 A,however, there is a problem. Let P be an arbitrary prover, that is, a func-tion P : (x; y1; : : : ; yk) 7! z. It is not clear how the prover can be coded upinto an oracle. The reason is that an oracle, unlike a prover, has no \mem-ory" and, therefore, cannot make its answers dependent upon the previouscommunication. It has in fact been shown in� L. Fortnow, J. Rompel, M. Sipser: On the power of multi-prover inter-active protocols, Proceedings of the 8th Structure in Complexity TheoryConference, IEEE, 1988, 156{161.that a language A is provable by an oracle if and only if A 2 NEXPTIME.This is potentially a bigger class than IP = PSPACE (cf. Topic 21).20.5. The probability is exactly 1=2 if the prover always chooses j 2 f0; 1g.Otherwise the probability is p=2, where p is the probability that the proverchooses j 2 f0; 1g.

292 Solutions20.6. Change the line \Accept if i = j" to \Randomly select k 2 f1; 2; 3; 4g.Accept if i = j and k � 3." This has the e�ect of translating the probabilitiesto 3=4 and (1=2) � (3=4) = 3=8.20.7. Instead of computing one \random copy" of one of the graphs, H , theveri�er generates k independent random copies, H1; : : : ; Hk, and communi-cates these to the prover. The veri�er expects to receive k correct answersj1; : : : jk back from the prover and only accepts if this is the case. If thegraphs are isomorphic, then the prover can evoke acceptance with probabil-ity at most 2�k.20.8. If the input graphs G1 and G2 are isomorphic, then the graph H gen-erated by the prover is also isomorphic to both graphs and the prover (usinghis unlimited computational power) is able to compute the isomorphism �.So in this case and with this prover, the probability of acceptance is 1.But if the graphs G1 and G2 are not isomorphic, then no prover canproduce the required isomorphism more than 1=2 of the time, since in halfthe cases, no such isomorphism will exist. By means of the usual techniques,this probability of 1=2 can be further reduced to ful�ll the de�nition of IP.20.9. The desired machine M works as follows:INPUT (G1; G2);GUESS RANDOMLY j 2 f1; 2g;GUESS RANDOMLY � 2 Sn;(� Sn is the set of permutations of f1; : : : ; ng �)OUTPUT (�(Gj); j; �);The distribution of triples generated by this program is the same as thedistribution that can be observed in the given protocol on an input (G1; G2) 2GI . The �rst component of this triple is a graph H isomorphic to G1 or G2,chosen under the uniform distribution; the second component is a number j 2f1; 2g that is uniformly distributed and independent of the �rst component;and the third component is an isomorphism between Gj and H .20.10. The protocol can be followed word for word, except that at the pointwhere the prover is required to \determine � so that �(Gj) = H ," instead theprover uses the extra information (namely, ' with '(G1) = G2) to compute� in polynomial time as follows:� =8>><>>:� if i = 1, j = 1,�'�1 if i = 1, j = 2,�' if i = 2, j = 1,� if i = 2, j = 2.21.1. By DeMorgan's laws one can systematically push all of the negationsymbols to the inside until they are all in front of variables:

Solutions 293:(F ^G) = (:F _ :G) ;:(F _G) = (:F ^ :G) ;:8xF = 9x:F ;:9xF = 8x:F :21.2. For the variables this is true since only the values 0 and 1 are sub-stituted. The use of 1� xi for negation turns a 0 into a 1 and vice versa, sothis is also correct. (This is why it is important that negation only occurs atvariables.) Now consider two formulas F and G, for which the claim is true.Then one can easily check that multiplication and addition behave correctlyfor F ^ G and F _ G. Similarly, if we have a formula of the form QxF ,Q 2 f9;8g, and substituting a 1 or 0 into F for x produces a correct arith-metic value for the corresponding formulas with the variable x replaced byTRUE or FALSE, then multiplication will correctly evaluate 8 and additionwill correctly evaluate 9.21.3. Since the variables xi do not occur in the in the subformula 9y 9z (y_z),this subformula can be evaluated directly: its value is 4. Each application ofa universal quanti�er squares the value, so in the end the value is 42m .21.4. We use induction on the length of formulas. The largest value thatcan be assigned to a variable or negated variable is 1 � 221 . For a formula oflength n > 1 of the form (F �G), � 2 f_;^g, the formulas F and G will (bythe inductive hypothesis) be assigned values � 22l and � 22r with r+ l � n.The value for F �G is then at most 22l � 22r = 22l+2r � 22n . In the case of aformula QxF , Q 2 f9;8g, if the value of F is at most 22m with m < n, thenvalue for F is at most 22m � 22m = 22�2m = 22m+1 � 22n .21.5. In the interval in question there are at least p23n � 2n > 2n primenumbers. Let these be p1; p2; : : : ; pk, k > 2n. If for all i � k, a � 0 (mod pi),then by the Chinese Remainder Theorem, a � 0 (mod Qki=1 pi). SinceQki=1 pi > Qki=1 2n > 22n , and since a � 22n , it follows that a = 0. Con-tradiction.21.6. Consider the set of numbers from 1 to n. Half of them are not prime,since they are divisible by 2. Of the rest, 2=3 remain if we strike the third thatare divisible by 3. After the next step, 1=5 of the remaining prime number\candidates" are stricken because they are divisible by 5. If we continue thisprocess until we reach the largest prime number less than pn, then onlythe prime numbers between 1 and n will remain. The number of candidatesremaining is thus exactly �(n). If we express this in formulas, letting p runover prime numbers, we get�(n) � n Yp�pn p� 1p � n bpncYi=2 i� 1i = n=bpnc � pn :

294 Solutions21.7. By the argument above (in Exercise 21.5), it follows that there are atmost 2n prime numbers p with p � 2n for which a � 0 (mod p). This meansthat in order to arrive at the desired error probability of 2�n, we need aninterval starting at 2n that contains at least 2n2n = 22n primes. If we use thesharper approximation �(n) � n= lnn we see that it su�ces to choose thesame interval as before, namely [2n; 23n].21.8. The polynomial p(x) � p0(x) also has degree (at most) d. Since thepolynomial is over a �eld, it can have at most d zeroes. The probability ofrandomly selecting one of these at most d zeroes from the set z 2 f0; : : : ; k�1gis, therefore, at most d=k � d=2n.21.9. Note that we can extend the de�nition of pG to include the case whereG has more than one free variable, in which case the polynomial pG will alsohave additional variables. We are only interested, however, in the degree ofone variable x. OR and 9 operations correspond to addition so they don'tincrease the degree of x. If F = H ^K, then pF = pH � pK , so the degree ofx in pF is at most the sum of the degrees of x in pH and pK . If F = 8yH ,then the degree of x in pF is twice the degree of x in pH , but this is nonzeroonly once for a given variable. Thus for subformulas H of G, the degree of xin pH is bounded by jH j if H does not contain the universal quanti�er thatdoubles the degree, and and by 2jH j if it does.21.10. Every subformula in F of the form Qx : : :8yH(x; : : :) (where Q 2f9;8g) is replaced by the following equivalent formulaQx : : : 9x0 ((x$ x0) ^ 8yH(x0; : : :)) :That is, a new variable x0 is introduced, its equivalence to x is con�rmed,and then it is used in place of x. (The equivalence symbol can, of course, beexpressed using AND, OR and NOT.)21.11. Pr[error] = 1� Pr[no error]= 1� nYi=1Pr[no error in round i]� 1� (1� 2n=2n)n :22.1. Let A be PSPACE-complete. Then PSPACE � PA � PSPACE and bya Savitch's Theorem PSPACE � NPA � NPSPACE � PSPACE.22.2. A �xed block contains only strings in A with probability 1=2n, so theprobability is (1�1=2n)2n that none of the blocks consists solely of strings inA. Thus the probability of at least one such block is 1� (1� 1=2n)2n , whichapproaches 1� 1=e = 0:632::: as n gets large.

Solutions 29522.3. On input x, jxj = n, nondeterministically guess a number i inf1; : : : ; 2ng and verify that all strings in the ith x-block are in the oracle.22.4. The proof follows the line of argumentation used in the case of Pversus NP. Let N1; N2; : : : be an enumeration of all NP oracle machines, thenPr[NPA = coNPA] � Pr[L(A) 2 NP]= Pr[9i L(A) = L(NAi)]�Xi Pr[8j (xj 2 L(A)4L(NAi))]=Xi Yj Pr[xj 2 L(A)4L(NAi) j C] :So it su�ces to show that for some " > 0Pr[xj 2 L(A)4L(NAi) j C] = (2) + (3) < 1� " ;or, equivalently, that (1) + (4) > ".Now consider the cases (1) > 0:1 and (1) � 0:1. If (1) > 0:1, then we aredone. If (1) � 0:1, then from (1)(1)+(3) � 1=3 we can conclude that (3) � 0:2;and since (3) + (4) > 0:3, it follows that (4) > 0:1.23.1. A 1-superconcentrator is given by the following graph:m - mAn n-superconcentrator can be made by putting together 2 copies of ann=2-superconcentrator S0:
�������>�������>---

-ZZZZZZZ~ZZZZZZZ~
............ �������>�������>---

-ZZZZZZZ~ZZZZZZZ~
............
hhhhhhh

h
S0S0The size g(n) of this graph satis�es g(n) = 2g(n=2) + O(n), so g(n) =O(n logn).This graph is a superconcentrator, in fact it is a permutation network,which means that for any arbitrary permutation of f1; 2; : : : ; ng, a node-disjoint connection can be found that realizes this permutation (betweeninput and output nodes). Let � : f1; : : : ; ng ! f1; : : : ; ng be a permutation.We can assign to � a bipartite graph G� with n nodes (partitioned intotwo pieces of size n=2 each), such that for every (i; j) with �(i) = j an

296 Solutions(undirected) edge is drawn between the (i mod n=2)-th left node and the(j mod n=2)-th right node. In this way every node has degree 2 (multi-edgesare possible). This bipartite graph consists of one or more disjoint cycles ofeven length. These can be colored red and blue in such a way that adjacentedges always receive di�erent colors. We assign all red edges to the upper(n=2)-permutation network and all blue edges to the lower. These are eachpermutations of n=2, which by the induction hypothesis can be realized bythe network S0.23.2. For the size (number of edges) g(n) of an n-superconcentrator weobtain the recursion g(n) = g(2n=3)+dn, where d is a constant and g(2) = 4.From this we get g(n) = O(n).23.3. Let k � n input nodes S and k output nodes T be �xed. Let S0 bethose nodes in S that correspond to positions that also occur in T , so thatthey can be connected directly. Let T 0 be the set of corresponding positionsin T . The inputs in S � S0 are routed through G. Since k0 = jS � S0j � n=2,these k0 inputs to G can be connected to some k0 outputs of G (= inputsto S0). The size of T � T 0 is also k0, so for this set of outputs of G0, thereis some set of k0 inputs that can be connected by node-disjoint paths. Thesuperconcentrator S0 connects these two sets of nodes. This shows that thesets S and T can be connected by node-disjoint paths.23.4. If for some subset S0 � S, jS0j > jN(S0)j, then at least one node of S0cannot be connected.In the other direction, suppose that jS0j � jN(S0)j and letM be a match-ing that does not match the node u 2 S. Then jN(fug)j � 1 and the nodesin N(fug) are already \blocked" by other nodes. Suppose v1 2 N(fug) and(u1; v1) 2 M for some node u1 6= u. Then jN(fu; u1g)j � 2. So there is atleast one other node v2 2 N(fu; u1g), so that the matchingM can perhaps bealtered so that the edges (u; v1), and (u1; v2) are inM instead. This will onlyfail if v2 is already matched with some u2 inM . But now jN(fu; u1; u2g)j � 3,so we can proceed analogously, obtaining a new node v3 and hoping to re-arrange the edges of M so it includes (u; v1), (u1; v2), and (u2; v3). This willonly fail if M already matches some u3 with v3.But we cannot fail forever. At the latest when we have used all the nodes inS, we must must �nd an unmatched node that allows for the rearrangement.23.5. (36m)!23.6. For k = 2 there are 6 � 2 = 12 edges to be connected on one side butonly 9 � 1 = 9 possibilities on the other side, so such a matching can onlyhappen if k � 3.23.7. More generally, we can show that if n = n1+n2, k = k1+k2, n1 � k1,and n2 � k2, then �n1k1��n2k2� � �nk�. Note that �nk� is the number of ways tochoose k of n people to occupy k available chairs. (We are only interestedin who gets a chair and who doesn't, not who gets which chair.) Similarly,

Solutions 297�n1k1��n2k2� is the number of ways to seat k of n people with the added restrictionthat the �rst k1 chairs are occupied by a subset of the �rst n1 people, andthe remaining k2 chairs are occupied by a subset of the remaining n2 people.Clearly, this is a smaller number.23.8. We compute Lk+1=Lk, canceling redundant terms and grouping asfollows:Lk+1=Lk = 9k + 96k+626m4k9k6k26m4k+4= (9k + 9) � � � (9k + 1)(3k + 3) � � � (3k + 1) � (26m� 4k) � � � (26m� 4k � 3)= (9k + 9) � � � (9k + 4) � (9k + 33k + 3)(9k + 23k + 2)(9k + 13k + 1)�(126m� 4k) � � � (126m� 4k � 3) :Each of these factors is monotone increasing in k, so Lk+1Lk is monotone in-creasing in k, from which it follows that Lk�1Lk+1=L2k � 1, so Lk is convex.23.9. If we let k = 3, then3m � �2718��26m12 � = 3m � �(1)�(m12)= �(m�11) < 1 :If we let k = 3m, then3m � �27m18m��26m12m� = 3m � �27m9m ��26m12m�= 3m � 27m9m(12m)!(9m)!26m12m= 3m � 27m9m12m3m26m12m= 3m � 27m9m12m3m26m9m17m3m� 3m � (1817)9m � (1217)3m� 3m � (0:6)m < 1 :24.1. A pyramid can be pebbled level by level. For the lowest level, we needk pebbles. Then we need one more to begin the second level. From that pointon, we can reuse pebbles to move up the graph.

298 Solutions24.2. We prove the following by induction on k:Every pebbling strategy, starting at any initial con�guration of peb-bles on Pk that leaves at least one path from the input nodes to theoutput node pebble-free requires at least k + 1 pebbles.The case k = 2 is clear. Now let k > 2 and let an arbitrary initial con�gurationwith at least one pebble-free path be given. Without loss of generality, wemay assume that there is a pebble-free path that passes through the node v1:e��7 SSo ffv1 v2v

 JJJJJJ JJJJJJPk: Pk�1Now suppose there were a pebbling strategy for the output node v thatused k or fewer pebbles. This strategy would include a strategy for pebblingv1, which by induction would require the use of all k pebbles. At the point inthe game where all k pebbles are on graph Pk�1, the path down the right edgeof Pk is pebble-free. In particular, to pebble v2 (in the copy of Pk�1 at theright edge of Pk) will again require all k pebbles, which means that we mustremove the pebble from v1. Thus with k pebbles it will not be possible tocover v1 and v2 simultaneously, so we will need at least k+1 pebbles to coverv. (Only k pebbles would be necessary if we allowed \sliding" of pebbles,which would correspond to using only two registers to compute things likex = x+ y.)24.3. For every node u with in-degree d > 2, replace the subtree consistingof that node and its predecessors with a binary tree with d leaves (assigned tothe original predecessors of u). The number of pebbles required to pebble thegraph remains the same (it just takes more time), since once the d originalpredecessors of u have been pebbled, it takes only one additional pebble tocover u in the tree, just as in the original graph (see the previous exercises).Clearly the in-degree of each node will now be 2 and the number of edgeswill have at most doubled.24.4. We start with G1 = ; and G2 = G and successively move from G2to G1 nodes (along with their in-coming edges) that already have all of theirpredecessors in G2. In this way, there cannot be any \back-edges" in A. Thisprocess is continued until at least n=2 edges are in G1. Since at each stepat most 2 new edges enter G1, the number of edges in G1 will be at mostn=2 + 2.

Solutions 29924.5. Case 1 is trivial since it only covers �nitely many cases.Case 2: P (n) � P (n=2 + 2) � (n=2 + 2)= log(n=2 + 2) � n= logn.24.6. For case 3 we have:P (n) � 2nlogn + P (n=2 + 2)� 2nlogn + c � n=2 + 2log(n=2 + 2)� 2nlogn + c � 0:6 � nlog(n=2)� 2nlogn + c � 0:6 � n0:9 � logn� c � nlogn ;when c � 9 and n is large.24.7. In case 4, apply n=2� 2n= logn � n=4 to getP (n) � P (n=2� 2n= logn) + P (n=2 + 2) + 1� c � n=2� 2n= lognlog(n=2� 2n= logn) + c � n=2 + 2log(n=2 + 2) + 1� cn=2log(n=4) � 2cn= lognlog(n=4) + cn=2log(n=2) + 2clog(n=2) + 1� cn=2logn� 2 � 2cnlogn(logn� 2) + cn=2logn� 1 + 2 :Now apply the equation 1x� a = 1x + ax(x � a) to getP (n) � cn=2logn + cnlogn(logn� 2) � 2cnlogn(logn� 2)+ cn=2logn + cn=2logn(log n� 1) + 2� cnlogn � cn=2logn(logn� 2) + 2 � cnlogn:24.8. Under the assumption that all context sensitive languages can berecognized in linear time we getNSPACE(n) � DTIME(n)(DTIME(n logn) (Time Hierarchy Theorem)� DSPACE(n)� NSPACE(n) ;

300 Solutionswhich is a contradiction.24.9. We build up a set of n � j inputs with the desired property succes-sively as follows: Let E1 be an arbitrary (j+1)-element subset of the inputs.E1 is connected to A via j + 1 node-disjoint paths (by the de�nition of su-perconcentrator), of which at least one must be pebble-free. Let e1 be thecorresponding input node. Build E2 = (E1�fe1g)[feg for any input e thathas not yet been considered. Once again there is at least one pebble free pathwith corresponding input e2 2 E2. Repeated application of this procedureleads to a set of n� j inputs with the desired property.24.10. jC(n)j = �(2n), so jGn+1j = �(2n) + 2jGnj. This recursion relationhas the solution �(n2n).24.11. Gn includes, among other things, direct connections between theinputs and outputs. If we just consider these edges, it is clear that the com-bination of Gn and C(n) is at least as good as C(n) alone, so it must also bea 2n-superconcentrator.24.12. Consider a strategy that takes a total of t steps on G8, and { startingfrom a con�guration in which at most 3 nodes are pebbled { pebbles 14outputs. By Lemma 24.2, 4 of these outputs are connected with at least 253outputs via pebble-free paths. So there must be one of these outputs that isconnected to at least 64 of the inputs via pebble-free paths. Let a be thisoutput and let t1 be the last time at which all 64 of the inputs were stillunpebbled. Then the statement of the theorem is satis�ed for the interval[t1 + 1; t], since in this time interval 64 � 34 inputs need to be pebbled andat least one pebble remains on the graph (otherwise t1 would not have beenthe last time the inputs were all unpebbled).24.13. We have a graph family fGng with jGnj = �(n2n) edges. In orderto pebble a certain subset of the outputs in any order, we need at leastc2n pebbles, for some c > 0. So there must be an output that requires c2npebbles (else one could pebble all the outputs with fewer pebbles by pebblingone after the other, each time removing all of the pebbles use.)So P (m), the required number of pebbles, satis�esP (m) � c2n = c�(m)=n � c�(m)=O(logm) �
(m= logm) ;where m is the size (number of edges) of Gn.25.1. Consider the following P-computable distribution, de�ned on tupleshx; a; bi, where x is a CNF formula, a an assignment to the variables in x,and b a bit:�(hx; a; bi) = � 1jxj2�2jaj if b is the truth value for x under assignment a,0 otherwise.

Solutions 301Clearly this is P-computable. Furthermore, ��(x;1; 1)���(x;1; 0) 6= 0 if andonly if there is a satisfying assignment for x. Thus if �� is P-computable,then SAT 2 NP, so P = NP.25.2. 1m � 1m+ 1 = (m+ 1)�mm(m+ 1) = 1m(m+ 1) , soNXm=1 1m(m+ 1) = 1� 1N + 1 ! 1 as N !1 :More generally, NXm�1 1mk = ��1k� (1mk�1)����N1= 1k! � 1kNk�1)! 1k! as N !1 :25.3. Let f be de�ned byf(x) = �2n if x = 0n,0 otherwise.Then Xjxj=n f(x)2n = 2n + 2n � 12n � 2 ;but Xjxj=n f(x)22n = 22n + 2n � 12n � 22n2n = 2n :25.4. Closure under maximum is demonstrated byXjxj max"(f(x); g(x))jxj � �(x) = Xf(x)>g(x) f"(x)jxj � �(x) + Xf(x)�g(x) g"(x)jxj � �(x)�Xx f"(x)jxj � �(x) +Xx g"(x)jxj � �(x) <1 :Clearly we have closure under �. Closure under sum is then obtained bynoticing that f+g � 2max(f; g). Closure under exponentiation is obtained bychoosing an appropriately adjusted value for ". Closure under multiplicationthen follows because f � g � f2 + g2.25.5. Suppose the expected value of f is polynomially-bounded with respectto some distribution �. Then there are constants c > 0 and k > 1 such thatfor all n, Pjxj=n f(x)�n(x) � cnk. Let " = 1=k, then

302 SolutionsXjxj=n f"(x)jxj �n(x) < Xjxj=n 1 +�f"(x)jxj �k �n(x)� Xjxj=n 1 + f(x)nk �n(x)= 1 + 1nk Xjxj=n f(x)�n(x)� 1 + c :SoXjxj�1 f"(x)jxj �(x) �Xn�1 Xjxj=n f"(x)jxj �(x) �Xn�1(1 + c)�(�=n) = 1 + c <1 :25.6. Consider the following algorithm:1. Input a graph G.2. Search G for a copy of K4 (by checking each set of four vertices to seewhether all six edges are present in the graph). If a copy of K4 is found,reject.3. Search for a 3-coloring by assigning each possible coloring to the nodesand checking if two adjacent nodes have the same color. If a 3-coloringis found, accept; else, reject.The running time of this algorithm is polynomially bounded on instancesthat contain a copy of K4, since there are only �n4� < n4 potential copies ofK4, and each can be checked in polynomial time. Let the polynomial boundin this case be p(n).If there are no copies of K4 in G, then the algorithm must perform step3. There are 3n potential colorings, so this step takes at most 3nq(n) time,for some polynomial q.Now we need a bound on the probability of �nding a copy of K4 in G.Given any set of four nodes, the probability that they form a copy of K4 is(1=2)6 = 1=64. Thus we can give the following rough approximation for theprobability that no K4 is found:Pr(G contains no K4) � �6364�n=4 :Let c > 1 and k > 1 be integer constants such that cnk > max(p(n); q(n))and (31=k)(6364)1=4 = � < 1. Let A be the set of graphs that contain no copyof K4. By the closure properties of polynomial on �-average, it is su�cientto show that g(x) = f(x) :� cjxjk is polynomial on �-average. The followingsequence of inequalities shows this to be the case:

Solutions 303Xx g(x)1=kjxj �(x) � Xx 62A 0 � �(x) +Xx2A �3jxj�1=kjxj �(x)� 0 +Xn 3n=k�(A=n)�Xn 3n=k � (63=64)n=4�Xn �31=k � (63=64)1=4�n�Xn �n <1 :25.7. Suppose f : (A; �) �Pm (B; �), and g : (B; �) �Pm (C; �). Clearlyh = g � f : A �Pm C, so it su�ces to show that � �h �. Let p be a polynomialand let �1 and �1 be distributions such that� jf(x)j � p(jxj),� jg(y)j � p(jyj),� �(x) � p(jxj)�1(x),� �(y) � p(jyj)�1(y),� �(y) =Pf(x)=y �1(x), and� �(z) =Pg(y)=z �1(x),as guaranteed by the de�nition of �Pm. (For ease of notation we are assuming�(range(f)) = 1 and �(range(g)) = 1, so no scaling is needed. The argumentcan be easily modi�ed if this is not the case.) It follows that�(z) = Xg(y)=z �1(y)� Xg(y)=z p(jyj)�(y)� Xg(y)=z Xf(x)=y p(p(jxj))�1(x)� Xh(x)=z p(jxj)p(p(jxj))�(x) ;so we can de�ne a distribution �2 such that �(z) =Ph(x)=z �2(x) and �(x) �p(p(jxj))p(jx)�(x), thus � �h �.25.8. Suppose f : (A; �) �Pm (B; �), and (B; �) 2 AP. As in the previousexercise, for ease of notation, assume that �(range(f)) = 1. The obviousalgorithm for determining whether x 2 A proceeds by �rst computing f(x)and then checking whether f(x) 2 B. Since f is computable in polynomial

304 Solutionstime, there are constants c > 1 and k > 1 such that jf(x)j � cjxjk . Since(B; �) 2 AP, there is an algorithm for B that runs in time t, where t ispolynomial on �-average (witnessed by some exponent "). The running ofour algorithm for A is at most cjxjk + t(cjxjk). By the closure properties ofpolynomial on average, it su�ces to show that h = t(cjxjk) is polynomial on�-average.First we consider h"=k:Xx h"=k(x)jxj �1(x) �Xy Xf(x)=y t"=k(y)jyj1=k �1(x)�Xy t"=k(y)jyj1=k �(y)�Xy �1 + t"(y)jyj � �(y)= �(��) +Xy t"(y)jyj �(y) <1 ;so h"=k is polynomial on �1-average. This implies that h is polynomial on�1-average, which implies that h=p is polynomial on �-average, and thush = (h=p)p is polynomial on �-average. So (A; �) 2 AP.25.9. If �(x) > 2�n, then the �rst di�erence in the binary representationsof ��(x) and ��(x� 1) must come at or before the nth digit. So let zx be thelongest common pre�x of the binary representations of ��(x) and ��(x� 1),and de�ne code�(x) bycode�(x) = �0x if �(x) � 2�jxj,1zx otherwise.Now we verify the three properties code� is required to have.� E�ciency. Since �� is polynomial-time computable, so is code�.� Uniqueness. If �(x) 6= 0, then0:zx � ��(x � 1) < 0:zx1 � ��(x) � 0:zx1 :So x is uniquely determined by either 0x or 1zx.� Compression. If �(x) � 2�jxj, then j0xj = 1 + jxj � 1 + log(1�(x)). On theother hand, if �(x) > 2�jxj, then jzxj < jxj and�(x) � 0:zx1� 0:zx = 2�jzxj ;so jzxj � min(jxj; log(1�(x))).

Solutions 30525.10. By the de�nition of D-HALT,�((MA;�; code�(x); 1q(jxj)) = cq(jxj)2 � jcode�(x)j2 � 2jcode�(x)j ;where c is a constant depending only on A and code�. By Lemma 25.11,jcode�(x)j � 1� log(�(x)), so �jcode�(x)j � log(�(x))�1, which means that2�jcode�(x)j � �(x)2 :Thus�((MA;�; code�(x); 1q(jxj)) � c�(x)2q(jxj)2 � jcode�(x)j< c2j(MA;�; code�(x); 1q(jxj))j2 � jcode�(x)j ;from which it follows that � �f �.25.11. Suppose that a graph G with n nodes is encoded using an adjacencymatrix. Then the size of the encoding x for G is n2. The weight of such agraph is given by n�22�n2 < 2�jxj.25.12. The following is a sketch of a solution, but it can be easily formalized.The encoding of hM;x; 1ki takes about jM j+ jxj+ k bits. So if we �x M andx and let k vary, the encoding takes �(k) bits and the weight is �(k�2). Butfor every ", �(k�2) > 2��(k)" when k is large enough.25.13. x0 2 B0 can be determined nondeterministically in time 2p(jxj) = jx0j.26.1. 1N (1 + 2 + : : :+N) = N(N + 1)2N = N + 12 .26.2. m=N .26.3. For ease of notation we will assume that each node in the tree has onlytwo children; the general case follows by a similar argument. For any nodev in the tree, let pv be the probability labeling the edge to the �rst child;(1� pv) is then the probability labeling the edge to the other child.We prove that the sum of the probabilities at any level k is 1 by inductionon k. When k = 1, there is only one node, and it has probability 1, since theempty product is 1. Now suppose that the sum of the probabilities at levelk is 1. Let qv be the probability of a node v on level k. Then the sum of theprobabilities of the nodes on level k + 1 isXv qvpv + qv(1� pv) =Xv qv(pv + (1� pv)) =Xv qv = 1 ;where the sums are over all nodes on level k.

306 Solutions26.4. If the entries inM are real,M t =M�. The fact that the rows (columns)are orthonormal is just another way of expressing that MM t = M tM = I ,since the values in MM t are just the dot product of two columns, and thevalues of M tM are the dot product of two rows. This implies the statedequivalence.26.5. Note that in the following example, the probability is 0 for every stateafter two steps, even though the probability of going from any parent nodeto either of its children is 1=2 . ������ @@@@@@������ AAAAAA ������ AAAAAAjai jbi jai jbi1=p2 1=p2 �1=p2 �1=p21=p2 1=p2
With an appropriate labeling of the internal nodes of this tree, this corre-sponds to a matrix 1p2 24 0 1 10 1 10 �1 �135, which is not unitary.26.6. M = 1p2 � 1 11 �1� will work.26.7. W : jc0i 7!Pi(1p2)njcii.26.8. W : jcii 7! Pj(1p2)n(�1)i�j jcii, where i � j is the dot product of thestrings i and j. This is because a negative sign is introduced exactly when abit is 1 both before and after the transformation.26.9. Since D =WF̂W , the e�ect of D on jcii isjcii W7!Xa (1p2)n(�1)i�ajciiF̂7! jc0i+Xa6=0(1p2)n(�1)1+i�ajcaiW7!Xj (12)njcji+Xa6=0Xj (12)n(�1)1+i�a+a�j jcji ;

Solutions 307so Dii = 1N +Xa6=0 1N (�1)1+i�a+a�i= 1N 0@1 +Xa6=0�11A= 1� (N � 1)N = 2�NN ;and Dij = 1N +Xa6=0 1N (�1)1+i�a+a�j= 1N 1 + 1i�0+0�i +Xa (�1)1+i�a+a�j!= 1N (2 + 0) = 2N :26.10. Note that Dt = D, so it su�ces to show that D2 = I . Clearly, I2 = I ,and P = P 2 since P 2ij =PN�1i=0 (1=N)(1=N) = NN2 = 1N . SoD2 = (�I + 2P)2 = I2 � 4P + 4P 2 = I � 4P + 4P = I :26.11. For any vector x = [x0; x1; : : : ; xN�1]t, Px is a row vector, eachcomponent of which is equal toPn�1i=0 (xi=N), so each component of Px is theaverage of the values in x. ThusDx = (�I+2P)x = �x+2Px = Px�(x�Px)is the inversion about the average.26.12. The base case is trivial using sin(�) = 1=pN and cos(�) = pN�1pN .Now suppose that we have shown that the equation is correct for kj and lj .It is perhaps most natural to verify the values of kj+1 and lj+1 are as statedby working backwards. Let � = (2j + 1)�. Then using sin(2�) = 2pN�1N andcos(2�) = N�2N , and a tirgonometric identity for sin(� + 2�), we see thatsin((2(j + 1) + 1)�) = sin(� + 2�)= sin(�) cos(2�) + cos(�) sin(2�)= kjN � 2N + ljpN � 12pN � 1N= kjN � 2N + lj 2(N � 1)N :The argument for kj+1 is similar.

308 Solutions26.13. If a = jT j=N , and the algorithm randomly picks an element to queryrepeatedly until a target is found, then the expected number of queries isa+ 2a(1� a) + 3a(1� a)2 + � � �+ (i+ 1)a(1� a)i + � � �= a 1Xi=0(i+ 1)(1� a)i= a 1Xi=0 iXj=0(1� a)i= a 1Xj=0 1Xi=j (1� a)i= a 1Xj=0 (1� a)ja= 1Xj=0 (1� a)j= 1=a :So if jT j=N = 1=4, the expected number of queries is 4. Even if the algorithmis modi�ed so that no query is made more than once, the expected numberof queries is nearly 4 when N is large.26.14. Assuming the algorithm makes a new query each time, it could takeN � jT j+ 1 > (3=4)2n queries.

Bibliography
M. Aigner. Combinatorial Search. Wiley-Teubner, 1988.N. Alon, J.H. Spencer. The Probabilistic Method. Wiley, 1992.K. Ambos-Spies, S. Homer, U. Sch�oning, ed. Complexity Theory: current re-search. Cambridge University Press, 1993.M. Anthony, N. Biggs. Computational Learning Theory. Cambridge Univer-sity Press, 1992.J.L. Balc�azar, J. Diaz, J. Gabarr�o. Structural Complexity I, 2nd edition.Springer, 1995.J.L. Balc�azar, J. Diaz, J. Gabarr�o. Structural Complexity II. Springer, 1990.L. Banachowski, A. Kreczmar, W. Rytter. Analysis of Algorithms and DataStructures. Addison-Wesley, 1991.J.P. Barth�elemy, G. Cohen, A. Lobstein. Complexit�e Algorithmique et prob-l�emes de communications. Masson, Paris 1992.R. Beigel. Class Notes on Interactive Proof Systems. Yale University Tech-nical Report, YALEU/DCS/TR-947, 1993.R. Book, ed. Studies in Complexity Theory. Pitman, 1986.D.P. Bovet, P. Crescenzi. Introduction to the Theory of Complexity. Prentice-Hall, 1994.W.S. Brainerd, L.H. Landweber. Theory of Computation. Wiley, 1974.G. Brassard, P. Bratley. Algorithmics: Theory & Practice. Prentice Hall,1988.T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. MITPress, McGraw-Hill, 1990.F.R. Drake, S.S. Wainer, ed. Recursion Theory: its Generalizations and Ap-plications. Cambridge University Press, 1980.P. Dunne. The Complexity of Boolean Networks. Academic Press, 1988.P. Dunne. Computability Theory: concepts and applications. Ellis Horwood,1991.R.W. Floyd, R. Beigel. The Language of Machines: An Introduction to Com-putability and Formal Languages. Computer Science Press, 1994.

310 BibliographyM.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. Freeman, 1979.A. Gibbons, W. Rytter. E�cient Parallel Algorithms. Cambridge UniversityPress, 1988.A. Gibbons, P. Spirakis, ed. Lectures on Parallel Computation. CambridgeUniversity Press, 1993.E.M. Gurari. An Introduction to the Theory of Computation. Computer Sci-ence Press, 1989.J. Hartmanis. Feasible Computations and Provable Complexity Properties.Society for Industrial and Appl. Math., 1978.J. Hartmanis, ed. Computational Complexity Theory. American Math. Soci-ety, 1989.L. Hemaspaandra, A. Selman, ed. Complexity Theory Retrospective II.Springer, 1997.R. Herken, ed. The Universal Turing Machine: A Half Century Survey. Kam-merer & Unverzagt und Oxford University Press, 1988.J. Hertz, A. Krogh, R.G. Palmer. Introduction to the Theory of Neural Com-putation. Addison-Wesley, 1991.J. Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press,1990.D.E. Knuth. The Art of Computer Programming. Vol 2: Semi-Numerical Al-gorithms. Addison-Wesley, 19812.R.L. Graham, D.E. Knuth, O. Patashnik. Concrete Mathematics: A Foun-dation for Computer Science, 2nd edition. Addison-Wesley, 1994.J. K�obler, U. Sch�oning, J. Tor�an. The Graph Isomorphism Problem: ItsStructural Complexity. Birkh�auser, 1993.D. Kozen. The Design and Analysis of Algorithms. Springer, 1992.E. Kranakis. Primality and Cryptography. Wiley-Teubner, 1986.L. Ku�cera. Combinatorial Algorithms. Adam Hilger, 1990.J. van Leeuwen, ed. Handbook of Theoretical Computer Science. Volumes A& B. Elsevier, MIT Press, 1990.H.R. Lewis, C.H. Papadimitriou. Elements of the Theory of Computation.Prentice-Hall, 1981.M. Li, P. Vit�anyi. An Introduction to Kolmogorov Complexity and its Appli-cations, 2nd edition. Springer, 1997.C. Lund. The Power of Interaction. MIT Press, 1992.M. Machtey, P. Young. An Introduction to the General Theory of Algo-rithms. North-Holland, 1978.C. Meinel. Modi�ed Branching Programs and Their Computational Power.Springer, Lecture Notes in Computer Science 370, 1989.

Bibliography 311S. Micali, ed. Advances in Computing Research. Vol 5: Randomness andComputation. JAI Press, 1989.M.L. Minsky, S.A. Papert. Perceptrons. MIT Press, 1969.B.K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauf-mann, 1991.P. Odifreddi. Classical Recursion Theory. North-Holland, 1989.C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.J. Parberry. Parallel Complexity Theory. Pitman-Wiley, 1987.M.S. Paterson, ed. Boolean Function Complexity. Cambridge UniversityPress, 1992.H. Rogers. Theory of Recursive Functions and E�ective Computability.McGraw-Hill, 1967. (Reprint by MIT Press, 1993).G. Rozenberg, A. Salomaa, ed. Current Trends in Theoretical Computer Sci-ence. World Scienti�c, 1993.G. Rozenberg, A. Salomaa. Cornerstones of Undecidability. Prentice-Hall,1994.A. Salomaa. Computation and Automata. Cambridge University Press, 1985.A. Salomaa. Public Key Cryptography. Springer-Verlag, 1990.C.P. Schnorr. Rekursive Funktionen und ihre Komplexitt. Teubner, 1974.U. Sch�oning. Complexity and Structure. Lecture Notes in Computer Science211, Springer, 1986.A.L. Selman, ed. Complexity Theory Retrospective. Springer, 1990.J.R. Shoen�eld. Mathematical Logic. Addison-Wesley, 1967.A. Sinclair. Algorithms for Random Generation and Counting. Birkh�auser,1993.M. Sipser. Lecture Notes 18.428: Computation by Automata. MIT, 1985.R.I. Soare. Recursively Enumerable Sets and Degrees. Springer, 1987.R. Sommerhalder, S.C. van Westrhenen. The Theory of Computability: Pro-grams, Machines, E�ectiveness and Feasibility. Addison-Wesley, 1988.H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birk-h�auser, 1994.K. Wagner, G. Wechsung. Computational Complexity. VEB Deutscher Ver-lag der Wissenschaften und Reidel-Verlag, 1986.O. Watanabe, ed. Kolmogorov Complexity and Computational Complexity.Springer, 1992.I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.D. Welsh. Codes and Cryptography. Oxford University Press, 1988.D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge Univer-sity Press, 1993.A. Wigderson. Lecture Notes, Barbados Workshop on Complexity, 1994.

312 Bibliography

Index
�PT see Turing reduction�Pm see many-one reduction�T see Turing reduction�T see Turing reduction9 61, 1548 61, 154� 1� �f � 218�0 214�� 214�(n) see Prime Number Theoremab (rising power) 200ab (falling power) 200PA 7NPA 7�Pi 131�Pi 131N 1R 1Z 11-1 reducibility 125abacus 13AC0 101AC0-reducible 105accM 168acyclic graph 2, 115, 197, 203Adleman 22, 235advice 137, 145Aho 197, 201Aigner 309Aleliunas 47Allender 173Alon 109, 282, 309alphabet 1Ambos-Spies 129, 309amplitude ampli�cation 228, 233AND-function 16, 101, 102, 165Angluin 90Anthony 90, 309AP 217

arithmetic formula 3, 16arithmetic hierarchy 132arithmetization of a formula 184Arthur 178Arthur-Merlin game 160, 178, 189Arvind 129Aspnes 109Asser 62atomic formula 61automaton 26average-case complexity 71, 213Babai 160, 178, 181, 183, 189back-tracking 290Baker 191, 195Balc�azar 40, 151, 309Banachowski 309Barth�elemy 309Barwise 22basis 104BDD see binary decision treeBeigel 109, 174, 309Bell 22Benio� 223, 234Bennett 69, 151, 195, 235Berman 123, 126, 129Berman-Hartmanis Conjecture 123,126, 134Bernoulli experiment 144Bernoulli trial 282Bernstein 144, 234, 235Berry Paradox 254Berthiaume 235Bhatt 201Biggs 90, 309Biham 233, 234binary decision tree 115binomial coe�cients 21, 164, 239binomial distribution 4, 94Binomial Theorem 21, 255bipartite graph 2, 198Biron 233, 234

314 IndexBlum 121Blumer 88{90Board 90Book 253, 309boolean circuit 88boolean formula 2boolean function 2, 79boolean hierarchy 135Boolos 267Boppana 161bound variable 61Bovet 151, 181, 189, 309Boyer 230, 233, 234BP. operator see counting classesBQP 226, 227Brainerd 14, 309branching program 2, 115Brassard 151, 180, 182, 233{235, 309Bratley 151, 309Bshouty 138Buntrock vibus 279Cai 138, 173Celoni 203, 212Chaitin 75Chandra 121Chang 139, 195Chebyshev's inequality 4, 94, 96Cherno� 144, 262, 282Chinese Remainder Theorem 185,186, 244, 293chip 133Chor 195Christen 70Chung 201circuit{ boolean, 2{ polynomial size, see polynomial-sizecircuits{ size of, 3, 92circuit complexity 79, 133circuit depth 92Claus vi, 36clause 49Cleve 138CNF see conjunctive normal formCohen 309Coles viiicollapse 38, 142{ of BH, 135{ of PH, 132, 142, 145, 153, 158collapsing degree 124

collision probability 147communication tape 176comparable 33complement{ closure under, 6, 38complete graph (Kn) 217complete language 6, 41{ for BP.�P, 168, 289{ for coNP, 119{ for DistNP, 218, 219{ for 9.�P, 288{ for NL, 41{ for NP, 6, 29, 52, 115, 116, 123, 126,133, 153, 155, 159, 165, 213, 217{ for �P, 165, 168, 289{ for PSPACE, 6completeness 50complex clause 55compressible 77computably isomorphic 123computation node 115computation tree 224concept 86conditional Kolmogorov complexity72conditional probability 4con�guration 4, 28, 40, 224, 290conjunctive normal form 259, 269,272connected graph 2, 45, 46coNP see counting classesconsistent 86constant-depth circuits 93context sensitive language 37, 207,299context-free language 119convex function 201Cook 59, 66, 165Cook Hypothesis 132Cook's Theorem 112, 113Cormen 151, 186, 189, 282, 309counting argument 159counting classes 163{174{ BP.NP, 153, 155, 178{ BP. operator, 153, 165{ BPP, 142, 153, 159, 177, 227{ C=P, 227{ FewP, 164{ MOD-classes, 174{ NP, 111, 163, 165, 173{ coNP, 111{ #P, 168{ �P, 163{166, 173

Index 315{ PP, 141, 171, 173{ ZPP, 138, 142C=P see counting classesCraig 113Craig Interpolation Theorem 111Crescenzi 151, 181, 189, 309critical 274critical assignment 53crossing sequence 80cryptology 181cut-and-paste 122cycle 2D-3COL 215, 217Dahlhaus 113Davis 15, 22, 23decidable 10, 27degree{ of a language, 124{ of a node in a graph, 44{ of a node in graph, 2{ of a polynomial, 1, 95, 103, 106, 187,188, 294{ total, 1, 107Demarrais 235DeMorgan's laws 101, 166, 259, 264,280, 292density function 214depth{ of a circuit, 92depth-�rst 290descriptive complexity 61, 65Deutsch 223, 234D-HALT 215, 218D-HAM 216diagonalization 279Diaz 40, 151, 309di�usion transformation 229dimension{ of a vector space, 104Diophantine equation 15Diophantus 15directed graph 115, 197, 203disjunctive normal form 49, 89, 259,266DistNP 214distribution function 213distributional problem 214, 215divide-and-conquer 197DNF see disjunctive normal formDNFn;k 89dot product 225downward separation 132

Drake 309Dunne 309Dykstra-Pruim viiie-mail 183easy formula 136easy-hard argument 136Ehrenfeucht 88{90Ekert 235Emde Boas, van 22Enderton 69entropy 145, 256, 258equivalence problem 26{ for branching programs, 119{ for circuits, 115{ for context-free languages, 119{ for LOOP-programs, 26{ for tournaments, 164equivalence relation 33evaluation vector 79example set 86expected value 4, 42, 143exponential running-time 42expression tree 33factoring 77, 223Fagin 68{70failure 94falling power 200fan-in 91Feigenbaum 181Fenner 235FewP see counting classesFeynman 234Fiat 181Fibonacci sequence 238�nite �eld 120, 146, 185, 187�nite injury 13�nitely presented group 219�rst-order 63at distribution 220Floyd 22, 309formal language 37formula 61, 80{ arithmetic, 3{ boolean, 2{ predicate logic, 3{ quanti�ed boolean, 3{ satis�able, 3{ size, 3Fortnow 227, 235, 291Fortune 121, 126, 129Fourier representation 103Fourier transformation 228

316 Indexfree variable 61Friedberg 9, 11Furst 91, 99, 101, 109G�odel 15Gabarr�o 40, 151, 309GAP 41Garey 22, 42, 47, 113, 155, 310generalized spectrum 64Gergov 122GF(n) 120, 146, 185, 187GI see graph isomorphismGibbons 310Gill 151, 191, 195Goldreich 160, 177, 179, 181, 182,195, 222Goldsmith viiiGoldwasser 160, 175, 177{180, 182GOTO-program 27Gr�adel 70Graham 310grammar 39graph 2{ acyclic, 2{ bipartite, 2{ connected, 2graph accessibility see GAPgraph coloring 215, 217graph isomorphism 42, 153, 155,158{160, 177, 179Grassl 233, 234greedy algorithm 55Green viii, 235Grover viii, 223, 234Gundermann 138Gurari 40, 151, 310Gurevich 70, 113, 222H�yer 230, 233, 234Hack 23Hagerup 282Haken 49, 59halting problem 5, 9, 17, 18, 26, 27,215, 218, 222Hamiltonian circuit 42, 216hard formula 136Hartmanis 37, 40, 70, 123, 138, 310hash function 146, 150, 156, 157Hausdor� 281Haussler 88{90Hemachandra 138, 173Hemaspaandra 310Herken 181, 310

Hertrampf viHertz 310Hilbert 15{ Tenth Problem, 15Ho�mann 160Homer viii, 126, 129, 235, 309Hopcroft 121, 197, 201, 212Horn formula 65, 68, 69Huang 235Hunt 37, 40hypothesis 86hypothesis space 86H�astad 99, 161Immerman 37, 40, 63, 70Impagliazzo 150, 151, 222in-degree 205inclusion problem 119inclusion-exclusion principle 4, 157Incompleteness Theorem see G�odelindependent events 4index (of an equivalence relation) 33inductive counting 39initial con�guration 209input node 203interactive proof systems 153, 160,176interpolant 111interpolant complexity 111Interpolation Theorem 2, 33, 120,121, 275interpreter 72inversion about the average 229IP 178, 183isomorphic{ computably, 123Isomorphism Conjecture 123, 125,126isomorphism degree 124Israeli 113Je�rey 267Johnson 22, 42, 47, 113, 155, 310Jones 23, 69, 70Jozsa 234, 235K�obler vi, 42, 47, 151, 160, 165, 174,181, 279, 283, 310Kadin 135, 138, 139Kannan 138Karg viKarp 40, 47, 70, 126, 129Kautz viiiKeisler 69

Index 317Kilian 310Knuth 189, 310Ko 151Kolmogorov 75, 192Kolmogorov complexity 71, 72, 75,77, 86, 88Kolmogorov random 74, 77Kozen 121, 310Kranakis 189, 282, 310Krause 122Kreczmar 309Krogh 310Ku�cera 310Kuroda 37, 40Kurtz 195L 41Lagrange 17Landweber 14, 309language 1Lautemann 160law of large numbers 44, 144LBA see linear bounded automotonLBA problem{ �rst, 37{ second, 38learning 85, 107learning algorithm 86Leeuwen, van 202, 310Leftover Hash Lemma 145, 147, 149Leiserson 151, 186, 189, 282, 309Levin 75, 213, 216, 222Lewis 310lexicographical order 1Li 75, 83, 90, 310Lidar 233, 234linear bounded automaton 37linearly independent 105Lipton 47, 126, 129literal 49, 89, 108Lobstein 309log-reducible (�log) 41Lolli 70, 113Longo 113Longpr�e viii, 126, 129loop-depth 26LOOP-program 25Lorenzen 175Lov�asz 47lower bounds{ for branching programs, 115{ for circuits, 91, 101{ for resolution proofs, 49

{ via Kolmogorov complexity, 77Lund 189, 310Machtey 128, 254, 310Mahaney 129majority 105majority vote 145, 148Makowsky 113Manders 22many-one degree 124many-one reduction 6{ for distributional problems (�Pm), 218{ polynomial time (�Pm), 6, 125Marja 113Markov chain 44Markov's inequality 4, 45, 94, 248,261, 282Marriage Theorem 199matching 198Matijasevi�c 15, 23McCulloch-Pitts neuron 106Meinel vi, 122, 310memory 204Merlin 178, 189Meyer 36Micali 160, 175, 177, 179, 180, 182,311Milterson 76Minsky 106, 107, 109, 311MOD-classes see counting classesmodel 3, 62monomial 89, 101, 104, 108monotone reduction 285move 203Muchnik 9, 11multi-linear polynomial 104, 118Mundici 111, 113museum 45Natarajan 90, 311NC1, NCk 261neural net 107neuron 107Nisan 122, 183NL 41nondeterminism 51NOR 244NOR-function 35NOT-function 101, 165NP see counting classes(NP,P-computable) see DistNP(NP-search, P-samplable) 222NQP 226, 227

318 Indexobservation 226Occam algorithm 88Occam's Razor 85Odifreddi 128, 311Ogiwara 126, 129one-one reduction{ polynomial time, 125one-time-only 116one-way function{ cryptographic, 221OR-function 16, 101, 165oracle results 183, 191oracle Turing Machine 9oracle Turing machine 5, 138, 192orthonormal 225, 306output node 203P 173#P see counting classesP-computable distribution 214P-isomorphic 123, 125P-samplable distribution 221PAC (probabilistically approximatelycorrect 86PAC-learnable 86padding 124padding function 124Palmer, E.M. 282Palmer, R.G. 310Papadimitriou 40, 70, 173, 181, 189,282, 310, 311Papert 106, 107, 109, 311Parberry 311parity function 90, 91�P see counting classespartial assignment 55Patashnik 310Paterson 311PATH 41path 2Paul 82, 203, 212pebble 203pebbling strategy 205perceptron 106permutation network 295Petri net 23Pfei�er 282PH 68, 131, 142, 153, 165, 173PHPn 52pigeonhole principle 52pipe 246Pippenger 201, 202Pitassi 59

Pitt 90POL 120POL 104Polish notation 80Pollett viiipolynomial 101polynomial on �-average 216polynomial-size circuits 3, 93, 111,133, 134, 145polynomial-time hierarchy see PHPos see positive reductionpositive reduction 158, 285Post correspondence problem 219Post's Problem 9Pratt 186, 189predicate logic 61predicate symbol 61prime factorization 77prime number 146, 185prime number problem 165prime number sieve 293Prime Number Theorem 77, 78, 185primitive recursive 25priority method 9, 11probabilistic method 46, 95, 159, 191,200probability ampli�cation 46, 143, 154,158, 166, 177, 283probability amplitude 225probability distribution 146probability gap 141, 153proof 134proof calculus 175property P 124provable by an oracle 177prover 175Pruim 235pseudo-random number 146, 148, 151PSPACE 6, 168, 172, 177, 178, 183public coins 178Putnam 15pyramid 205QBF 3, 183quanti�ed boolean formula 3, 183,188quanti�er 3, 16, 61, 64quantum mechanics 223quantum state 226quantum Turing machine 225QuickSort 71, 74, 75R�odding 69R�ub 282

Index 319Racko� 47, 175, 177, 179, 180, 182random bits 156random oracle 192Random Oracle Hypothesis 192random polynomial 101random restriction 95random sequence 71random variable 4, 141random walk 43random, Kolmogorov see KolmogorovrandomRazborov 101, 109Reckhow 59reducibility 123refutation 50register machine 5, 17, 25, 204regular graph 46relativization principle 191resolution 49resolvent 49reversible computation 226, 228Richter 70, 113Ritchie 36Rivest 151, 186, 189, 282, 309RL 42Robbin 69Robinson 15Rogers, H. 14, 129, 311Rogers, J. 227, 235Rompel 291round 176Rozenberg 23, 311Rudich 109Rytter 309Salomaa 311SAT 2, 6, 35, 115, 116, 124, 164�SAT 165Savitch 40, 294Savitch's Theorem 37Saxe 91, 99, 101Sch�oning viii, 38, 40, 42, 47, 113, 129,151, 160, 161, 165, 173, 181, 279,283, 309, 310Schaefer viiiSchmidt 121Schnorr 311scholastics 85Schuler viSchulz 62Schwichtenberg 69search algorithm 223Second Berman-Hartmanis Conjecture126

second-order existential 64second-order predicate logic 64Seiferas 82self-reducible 134, 145, 279, 283self-terminating code 78, 79Selman 40, 69, 70, 310, 311sentences 61set of examples 86Sewelson 138Shamir 178, 181, 183Shoen�eld 311Shor viii, 223, 235sieve of Eratosthenes 293similar probability distributions 147Simmons 181Simon 82, 234simple formula 188Sinclair 311sink 2Sipser 47, 91, 99, 101, 160, 177, 178,182, 291, 311size{ of a circuit, 3, 92{ of a formula, 3Smolensky 101, 109SO9 64Soare 311Solomono� 75Solovay 191, 195Sommerhalder 40, 311soundness 50source 2sparse 125, 133Specker 70spectral problem 61, 62, 68Spencer 109, 282, 309Spirakis 310start node 115statistical test 151Stirling's formula 255, 264Stockmeyer 68, 70Strassen 70strategy 203Straubing 311Strauss viiistring 1structure 61subspace 104success 94SUPER proof system 51super-duper-concentrator 208superconcentrator 197superconcentrators 203

320 Indexsuperposition 226Swapping Lemma 154symmetric boolean function 105, 108,261Szelepcs�enyi 37, 40Tamon 138Tapp 230, 233, 234Tarjan 203, 212Tarui 174tautology 3teacher 85terminal node 115Thierauf vithreshold function 265threshold gate 106threshold value 106, 153Thue system 219tiling 219Time Hierarchy Theorem 299time interval 209time-space trade-o� 205Toda 165, 167, 174, 183topological ordering 54Tor�an vi, 42, 47, 113, 151, 160, 165,181, 279, 283, 310total degree 1, 22, 107, 108, 240total ordering 69truth table 49, 79Tsichritzis 36Turing machine 4, 26, 27, 175, 224Turing reduction 9, 126, 133, 154Ullman 197, 201unbounded fan-in 91undecidable 15, 27uniform distribution 43, 146unitary 225universal hash functions 145, 146,151, 156, 157universal probability distribution 73,75, 214, 222universal traversal sequence 45, 46universal Turing machine 72

universe 61UNIX 246Valiant 86, 89, 90, 101, 109, 165, 174,212valid formula 183variance 4Vazirani 101, 109, 165, 174, 234, 235vector space 104vector space homomorphism 104veri�er 175Vit�anyi 75, 83, 90, 310Waack 122Wagner 138, 212, 311Wainer 309Walsh-Hadamard 228Wang 222Warmuth 88{90Watanabe 126, 129, 311Watrous 235Wechsung 138, 212, 311Wegener 279, 311Wegman 121Welsh 151, 256, 311Westrhenen, van 40, 311Wigderson 122, 160, 179, 182, 311witness 10, 113, 134witness circuit 134WLOG 81word problem 219worst-case complexity 71Wrathall 138XOR 158Young 11, 125, 128, 129, 254, 310Zachos 160, 161, 173�Z�ak 122zero-knowledge 179, 180ZPP see counting classesZuckerman 150, 151

