York University
 CSE 2001 Fall 2017 - Assignment 4 of 4 Instructor: Jeff Edmonds

Sorry. You MUST work in a pair.

Family Name: \qquad

Student \#: \qquad

Family Name: \qquad -

Student \#: \qquad

Given Name: \qquad

Email:

Given Name: \qquad
Email:

Section to which to return the test (circle one):

A: 9:00,
E: 4:00

a	10	
b	15	
c	15	
d	35	
e	10	
f	15	
0) Art	2	
Total	102 marks	

Keep your answers short and clear.
0) (2 marks) Art therapy question: When half done the exam, draw a picture of how you are feeling.

1. Let $P=\{\langle " M ", I\rangle \mid M$ is a TM that has a state that it never enters on input $I\}$.
(a) Suppose I prove $A \leq B$.

By Dec, I mean Computable/Decidable.
By Rec, I mean Recognizable but not Co-Recognizable. By Co-Rec, I mean Co-Recognizable but not Recognizable.
By Neither, I mean neither Recognizable nor Co-Recognizable.
Circle ALL that are possible.

- If A is decidable then B is: \quad Dec \quad Rec \quad Co-Rec Neither
- If A is not co-recognizable then B is: Dec Rec Co-Rec Neither
- If B is recognizable then A is: Dec Rec Co-Rec Neither
- If B is not decidable then A is: Dec Rec Co-Rec Neither
- If B is Rec and Co-Rec then B is: \quad Dec Rec Co-Rec Neither
(b) Is the problem P recognizable/acceptable? Either prove it is or argue that it is not. Is the problem P co-recognizable/acceptable? Either prove it is or argue that it is not. (7 sentences.)
(c) Either prove Halting $\leq_{\text {compute }} P$ or argue that it is impossible.

Hint: In one case, try having a new character $c_{\text {loop }}$
and the transition function rules $\delta\left(q_{i}, c_{\text {loop }}\right)=\left\langle q_{i+1}, c_{\text {loop }}\right.$, stay \rangle.
Hint: In other case, give the chain of consequences that would follow leading to a contradiction. (We only want No-No, Yes-Yes reductions.)
(d) Again either prove \neg Halting $\leq_{\text {compute }} P$ or argue impossible.
(e) State Rice's Theorem. Can you directly use it to prove P or $\neg P$ is undecidable?
(f) A Yes/No computational problem P (language) can be viewed as the set of yes instances. Define what it means for P to be enumerable. Compare and contrast this concept with the "list" definition of P being countable?
Is the problem P countable? Is it enumerable? Give a one sentence argue.
Is the problem $\neg P$ countable? Is itenumerable?

