
York University

CSE 2001 – Unit 5.2 Reductions for Undecidability
Instructor: Jeff Edmonds

Don’t cheat by looking at these answers prematurely.

1. Reductions: Let PTM Eq = {〈M,M ′〉 | ∀I, M(I) = M ′(I)}. The “Reductions For Uncomputability”
slides prove that Halting ≤ PTM Eq. Review this proof.

(a) Later in the same slides stated but did not prove that ¬Halting ≤ PTM Eq. Do this (yes to yes,
no to no) reduction. What does this say about the language PTM Eq with respect to it being
undecidable, unrecognizable, and/or co-recognizable.
Hint: We still say that M(I) = M ′(I) = ∞ even if neither machines halt on I.

• Answer: Suppose I have an oracle that decides PTM Eq.
Here is an algorithm that will decide the negation of Halting Problem.
Given an input 〈“M”, I〉,
I construct two more TMs MI and M ′.
The first TM has M and I hard wired into it.
MI on input I ′ does the following:

It ignores input I ′.
MI simulates M on I and halts and accept if M halts.

The second constructed TM M ′:
M ′ runs forever no matter what the input I ′ is.

I give 〈“MI”, “M
′”〉 to my oracle and if the oracle says “yes”, then I say “yes” and if it says

“no”, then I say “no”.
I prove that my algorithm works as follows.
Suppose M halts on I.
Then MI halts and accepts every input I ′.
However M ′ runs forever on every input.
Hence it is not the case that ∀I, M(I) = M ′(I).
Hence, the oracle says “no”.
Then I say “no”.
Hence I gave the correct answer to the negation of the Halting Problem.
Now suppose M runs forever on I.
Then MI runs forever on every input just like M ′ does.
Hence it is the case that ∀I, M(I) = M ′(I).
Remember the hint.
Hence, the oracle says “Yes”.
Then I say “Yes”.
Again I gave the correct answer to the negation of the ¬Halting Problem.
This proves that if PTM Eq is decidable, then the ¬Halting Problem is decidable.
However, the ¬Halting Problem is not decidable and hence PTM Eq is not decidable.
More over it proves that if PTM Eq is recognizable, then the ¬Halting Problem is recognizable.
However, the ¬Halting Problem is not recognizable or else because it is co-recognizable, it
would be decidable. Hence PTM Eq is not recognizable either.
This reduction does not prove that PTM Eq is not co-recognizable.
This is proved using the reduction Halting ≤ PTM Eq.

(b) Remember we like Karp reductions that take Yes instances to Yes instances and No to no. Prove
Halting ≤ ¬PTM Eq.
Hint: Or give the changes to a previous proof.

• Answer: The proof is identical to the proof of ¬Halting ≤ PTM Eq except for both the oracle
and our algorithm the Yes and No answers are switched.

1



2. Let Preverse = {“M” | M is a TM that accepts IR (reverse) whenever it accepts I }, i.e. computational
problem P says “yes” on inputs “M” in this set and says “no” on inputs not in this set.

(a) Use a reduction to prove that this is undecidable.

• Answer: We prove Halting ≤ Preverse as follows.
Suppose I have an oracle that decides Preverse.
Here is an algorithm that will decide the Halting Problem.
Given an input 〈“M”, I〉,
I construct another TM MI .
This TM has M and I hard wired into it.
MI on input I ′ does the following.

If I ′ = “10”, then MI halts and accepts.
else MI simulates M on I and halts and accept if M halts.

I give “MI” to my oracle and if the oracle says “yes”, then I say “yes” and if it says “no”,
then I say “no”.
I prove that my algorithm works as follows.
Suppose M halts on I.
Then MI halts and accepts every input I ′.
Then MI accepts IR (reverse) whenever it accepts I.
Then the oracle says “yes”.
Then I say “yes”.
Hence I gave the correct answer.
Suppose M runs forever on I.
Then MI halts and accepts “10” but runs forever on “01”.
Then the oracle says “no”.
Then I say “no”.
Again I gave the correct answer.
This proves that if Preverse is decidable, then the Halting Problem is decidable.
However, the Halting Problem is not decidable, hence Preverse is not decidable either.

(b) Can you directly use Rice’s Theorem to prove this?

• Answer: Yes, Rice’s Theorem does apply.
For every pair of TMs, if L(M1) = L(M2) then P (M1) = P (M2).
There are TM for which P (M) is yes and there are TM for which P (M) is no.

(c) Don’t do an additional reduction for this question, but given the reductions we have seen, do you
think Preverse is unrecognizable and/or co-recognizable.

• Answer: The above reduction Halting ≤ Preverse proves that if Preverse is co-recognizable,
then the Halting Problem is co-recognizable.
However, the Halting Problem is not co-recognizable or else because it is recognizable, it
would be decidable. Hence Preverse is not recognizable either.
The language Preverse is not co-recognizable for two reasons. First if we get M ′(I) to do
what M(I) does and get M ′(IR) to reject, then we are asking if M(I) rejects. This is co-
recognizable. The second reason is that Preverse is not co-recognizable is that it asks what
M does on every input. We gave a hard reduction to ¬Halting for this.

3. Let P = {〈“M”, I〉 | TM M on input I never tries to move its head left when it is already on the left
hand most cell of the tape. }.

(a) Use a reduction to prove that this is undecidable.

OOPS: The problem P is really equivalent to the negation of the halting problem. The halting
problem asks for a “yes” if a given event happens while P asks for a “no”. This means that P is
in co − recognizable. It is hence impossible to prove Halting ≤poly P . But it is possible to flip
the “yes” and the “no” and prove ¬Halting ≤poly P . This is sufficient to prove P is undecidable.

2



• Answer: Suppose I have an oracle that decides P .
Here is an algorithm that will decide the Halting Problem.
Given an input 〈“M”, I〉,
I construct another TM MI .
This TM has M and I hard wired into it.
MI ignores input I ′.
It simulates M on I except if M tries to move its head left when it is already on the left hand
most cell of the tape, then MI does not do this.
If M halts on I, then MI moves it head to the left most cell of the tape and then tries to
move the head left.
I give “MI” to my oracle and if the oracle says “yes”, then I say “yes” and if it says “no”,
then I say “no”.
I prove that my algorithm works as follows.
Suppose the given input 〈“M”, I〉 is a “yes” instance.
Then M runs forever on I.
Then MI never tries to move its head left when it is already on the left hand most cell of the
tape.
Then the oracle says “yes”.
Then I say “yes”.
Hence I gave the correct answer.
Suppose the given input 〈“M”, I〉 is a “no” instance.
Then M halts on I.
Then MI tries to move its head left when it is already on the left hand most cell of the tape.
Then the oracle says “no”.
Then I say “no”.
Again I gave the correct answer.
This proves that if P is decidable, then the ¬Halting Problem is decidable.
However, the ¬Halting Problem is not decidable and hence P is not decidable. More over
this proves that if P is recognizable, then the ¬Halting Problem is recognizable.
However, the ¬Halting Problem is not recognizable or else because it is co-recognizable, it
would be decidable.
Hence P is not recognizable either.

(b) Can you directly use Rice’s Theorem to prove this?

• Answer: No, Rice’s Theorem does not apply.
There can be two TM which accept the same language, i.e. L(M1) = L(M2), however one
tries to move its head too far left and one does not, i.e. P (M1) 6= P (M2).

4. Let P = {〈“M”, I〉 | TM M on input I never tries to move its head left. }. (Assume that TMs never
leave their head stationary.)

(a) Which other model of computation does a TM that never moves its head left remind you of?

• Answer: A TM that never moves its head left is like a Deterministic Finite State Automata
(DFA) in that it has a finite number of states and it reads its input once left to right.

(b) After the TM has moved its right past the input and moved right for a while on the blank tape
what must eventually happen to the state that it is in (i.e. whats written on its black board)?

• Answer: After reading the input, the TM keeps coming to bank cells.
Hence, it never gains any new information.
Hence, the next state only depends only on its previous state.
Because there is a finite number of states, the TM must eventually either halt or cycle, coming
back to the same state a second time.
If it ever cycles, then it will cycle forever.

(c) Give an algorithm that decides the problem.

3



• Answer: Simulate M on I.
If it moves its head left, then halt and announce this.
If it halts or cycles without moving left then halt and announce this.

4


