York University CSE 2001 – Unit 5.1 Undecidability Instructor: Jeff Edmonds

Don't cheat by looking at these answers prematurely.

- 1. Prove that there is an uncomputable computation problem P_{hard} .
 - Answer: Our goal is to prove that there is an uncomputable computation problem P_{hard}, i.e. one for which each TM M fails to compute, because there in an input I_M on which it gives the wrong answer, i.e. M(I_M) ≠ P_{hard}(I_M). This is stated using the first order logic statement: ∃P_{hard} ∀M ∃I_M M(I_M) ≠ P_{hard}(I_M)
 We prove this using the game.
 Define P_{hard} to be the problem ¬Problem_{diagonal}, defined as ¬Problem_{diagonal}("M") = 0 iff M("M") = 1, i.e. M on "M" halts and says "yes" (assuming "M" is a valid the description of TM M).
 Continuing the game, let M be an arbitrary TM.
 Define input I_M to be the description "M" of TM M.
 We know M does not accept ¬Problem_{diagonal}, because it gives the wrong answer on input I_M = "M", i.e. M(I_M) ≠ P_{hard}(I_M).
 This completes the proof that there is an uncomputable computation problem.
 - Answer: Reader's Digest: Proving the first order logic statement: $\exists P_{hard} \forall M \exists I_M M(I_M) \neq P_{hard}(I_M)$ Define problem P_{hard} so that $P_{hard}("M")$ is anything different than M("M"). Let M be an arbitrary TM. Define input I_M to be M's nemesis "M". We win because $M(I_M) \neq P_{hard}(I_M)$. This completes the proof that there is an uncomputable computation problem.
- 2. I could ask something to test if you understand both the statement that the halting problem is undecidable, the first order logic, the intuition, or the proof.
- 3. Accepting/Enumerating problem: Let $P_{\cup TM} = \{ \langle "M_1", "M_2" \rangle \mid L(M1) \cup L(M2) \neq \{ \} \}.$
 - (a) Give a deterministic algorithm that accepts/recognizes $P_{\cup TM}$. Explain why your solution is correct.
 - Answer:

 $\begin{array}{l} \textbf{algorithm} \ \ M_{\cup TM} \left(``M_1", ``M_2" \right) \\ \langle \textit{pre-cond} \rangle \textbf{:} \ ``M_1" \ \text{and} \ ``M_2" \ \text{are descriptions of TM.} \\ \langle \textit{post-cond} \rangle \textbf{:} \ ``M_1" \ \text{and} \ ``M_2" \ \text{are descriptions of TM.} \\ \langle \textit{post-cond} \rangle \textbf{:} \ \ \text{Halt and Accept iff } L(M1) \cup L(M2) \neq \{\}. \\ \text{Equivalently if } \exists I, \ M_1(I) = yes \ \text{and} \ M_2(I) = Yes. \\ \text{begin} \\ & \log \langle I, t \rangle \\ & \text{if}(\ M_1(I) \ \text{and} \ M_2(I) \ \text{both halt and accept on } I \ \text{after } t \ \text{time steps }) \\ & \text{halt and accept} \\ & \text{end loop} \\ \text{end algorithm} \end{array}$

 $\langle M_1, M_2 \rangle$ is a Yes instance, iff $L(M1) \cup L(M2) \neq \{\}$, iff $\exists I, M_1(I) = yes$ and $M_2(I) = Yes$, iff there is a tuple $\langle I, t \rangle$ such that $M_1(I)$ and $M_2(I)$ both halt and accept on I after t time steps, (This tuple will eventually be reached.) iff $M_{\cup TM}$ (M_1 , M_2) halts and accepts.

See the Assignment 5.0 to know how to loop over these tuples.

- (b) Give a deterministic algorithm that enumerates $P_{\cup TM}$. Explain why your solution is correct.
 - Answer:

 $\begin{array}{l} \textbf{algorithm} \ M_{\cup TM \ Enumerate} \left(\right) \\ \left< \textbf{pre-cond} \right>: \ \text{No inputs} \\ \left< \textbf{post-cond} \right>: \ \text{Each yes instance} \left< ``M_1", ``M_2" \right> \ \text{is eventually printed.} \\ \text{No no instances are outputted.} \\ \\ \begin{array}{l} \text{begin} \\ \\ 100p \left< ``M_1", ``M_2", t \right> \\ \\ \\ if(\ M_{\cup TM} \left(``M_1", ``M_2" \right) \ \text{halts and accepts after exactly } t \ \text{time steps} \) \\ \\ \\ Print(\left< ``M_1", ``M_2" \right>) \\ \\ \\ end \ loop \end{array} \right. \\ \\ \begin{array}{l} \text{end loop} \\ \\ \end{array}$

 $\langle "M_1", "M_2" \rangle$ is a Yes instance, iff there is a tuple $\langle "M_1", "M_2", t \rangle$ such that $M_{\cup TM}("M_1", "M_2")$ halts and accepts after exactly t time steps, (This tuple will eventually be reached.) iff $\langle "M_1", "M_2" \rangle$ is eventually printed.

See the Assignment 5.0 to know how to loop over these tuples.