
York University

CSE 2001 – Unit 5.0 Uncountable
Instructor: Jeff Edmonds

Don’t cheat by looking at these answers prematurely.

1. What is the “size” of the following sets:
i {i | i is a prime integer}: Finite Countably-Infinite Uncountable
ii {G | G is a grammar}: Finite Countably-Infinite Uncountable
iii {L | L is a regular language}: Finite Countably-Infinite Uncountable
iv {L | L is a language}: Finite Countably-Infinite Uncountable
v all points on a 1 inch line: Finite Countably-Infinite Uncountable
vi all the atoms in the earth: Finite Countably-Infinite Uncountable

• Answer: i, ii, and iii: each object in each have an easy finite description and hence the sets
are countable. iv and v: each object in each need an infinite description and hence the sets are
uncountable. vi: finite

2. Write pseudo code that loops over every tuple of 4 positive integers 〈w, x, y, z〉 such that each is
eventually printed (and only printed once).

• Answer:

algorithm Print4Tuples()

〈pre−cond〉: No inputs

〈post−cond〉: Each tuple 〈w, x, y, z〉 is eventually printed.

begin
loop sum ≥ 0

w = 0 . . . sum

x = 0 . . . sum − w

y = 0 . . . sum − w − x

z = sum − w − x − y

Print(〈w, x, y, z〉)
end algorithm

3. Prove that there are more real numbers than integers, i.e. |R| > |N |.

• Answer: We prove this by proving the following first order logic statement
∀ an inverse functions F−1 from N ideally to R,

∃xdiagonal ∈ R,∀i ∈ N , F−1(i) 6= xdiagonal

namely there are not enough integers to hit each real.
We prove this by playing the game.
Let F−1 be an arbitrary inverse function from N ideally to R.
Define the real xdiagonal ∈ R as follows.
For each i ∈ N , I must define the ith digit of xdiagonal.
For this, we use flip of the ith diagonal element as follows.
Let xi denote the real F−1(i) that the ith row gives us.
Let di denote the ith digit of xi.
Then let the ith digit of xdiagonal be any digit d′i other than di.
This completely defines xdiagonal.
Continuing the game, let i ∈ N be arbitrary.
Note xi = F−1(i) and xdiagonal differ in their ith digits.
This proves that F−1(i) 6= xdiagonal.

1



4. Rationals:

(a) Each fraction has an infinite description, eg 1
3 = 0.33333 . . .. Didn’t we say that this means the

set of fractions Q is uncountable? Explain why or why not.

• Answer: What we said is that if each element in a set S can be given a unique finite description
then the set S is countable. This does not mean that there are not also infinite descriptions
for these elements. The converse is that if S is uncountable that there is no unique finite
description, because each element has “contains” an infinite amount of information.

(b) Study the prove that the set of real numbers is uncountable. Use the exact same proof to show
that Q is uncountable. What if anything goes wrong in the proof?

• Answer: The argument works the same for Q until the punchline. The new number con-
structed is not necessarily rational, so there is no contradiction from the fact that it is missing.

5. Power Sets: Let U be a set of objects. In this question we will first have it be the set of positive
integers and then be the set of positive reals less than one. The power set of U is the set of all subsets
of U . If U is finite, then its power set has cardinality 2|U | elements. Hence, power set of U is often
denoted by 2U = {s | s ⊆ U}. Similarly, denote 2U

finite = {s | s ⊆ U and |s| is finite}. We will consider

the relative sizes of U , 2U
finite, and 2U .

(a) Recall that we say |2U
finite| ≤ |U | if ∃ a function F : 2U

finite → U such that ∀s ∈ 2U
finite, F (s) ∈ U

and ∀s, s′ ∈ 2U
finite, s 6= s′ ⇒ F (s) 6= F (s′). A common way to prove s 6= s′ ⇒ F (s) 6= F (s′) is

to provided the inverse function F−1 and prove that ∀s F−1(F (s) = s. (Though I did want you
think about this, I don’t ask you to do it.)

i. Let U = N denote the set of positive integers. Then 2Nfinite denotes the set of finite subsets

of N . Prove that 2Nfinite is countable by defining a concrete function F (s) = us mapping each
finite subsets s of the positive integers to a unique integer us. Use the ascii technique given
in the slides.
- If s = {24, 8}, what is F (s)?
- What happens if you don’t encode the commas?
- Does the fact that the integers in s can be put into different orders create a problem?
- What two properties of s are key in proving that for every s ∈ 2Nfinite, F (s) is a finite
integer?
- Look at the ASCII table. Why might I have gotten nervous about using the decimal code
instead of the hex code?

• Answer: - Given a set s ∈ 2Nfinite like s = {24, 8}, map this to the ascii string “{24, 8}”
by ordering the elements of the set s in an arbitrary order, writing each such integer in
decimal notation, separating them with commas, and just for aesthetics, surrounding it
all with open and close curly bracket characters. It should be clear that this provides each
such object s with (at least one) finite description that such that each such description
uniquely identifies s. From here the technique is exactly like in the slides. Each character
in the string description “{24, 8}” is converted into its hex ascii. Each hex ascii is two
digits. Concatenate these digits into one string. Then view this as the single hex integer
F (s) = us. For example, F ({24, 8}) = 7B32342C387D16.
- If you don’t encode the commas, than the description string “{24, 8}” becomes only
“248” which could have been produced from F ({2, 4, 8}) and F ({2, 48}) as well as
F ({24, 8}).
- The fact that the integers in s can be put into different orders does not create a problem
because it does not matter if one object s gets mapped to more than one description,
namely “{24, 8}” vs “{8, 24}”, and hence to more than on integer, namely F ({24, 8}) =
7B32342C387D16 vs 7B382C32347D16.
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- Each integer in s is represented by a finite number of decimal digits and s contains a
finite number of integers, hence the encoding contains a finite number of hex digits and
hence F (s) is valid integer.
- Each hex ascii code has two digits. Hence, (when defining F−1), the integer
7B32342C387D16 can easily be broken into ascii codes words 7B 32 34 2C 38 7D. In con-
trast, some decimal ascii codes have 1, others 2 and yet others 3. Hence the string “ww”
gets converted to 119 119 and concatenated to 119119. But this could be interpreted as
11 91 19 which is the string “VT [ DC3”. Ok maybe there is not really a danger of this
misunderstanding.

A Previous Answer: Let the binary expansion of F (s) = us have a 1 in the ith digit
if an only if the positive integer i is in the set s. For every s ∈ 2Nfinite, s is finite and

hence contains a maximum finite integer umax. It follows that F (s) ≤ 2umax+1. If s and
s′ ∈ 2Nfinite are different then there is some positive integer i that is in one but not the
other. Hence, F (s) and F (s′) differ in that bit and hence must be different integers.

ii. Let R[0,1) denote the set of positive reals less than one. Let 2
R[0,1)

finite denote the set of finite

subsets of R[0,1). Let R denote the set of reals (possibly bigger than one). Prove that 2
R[0,1)

finite

has cardinality at most that of R by defining a concrete function F (s) = xs mapping each
finite subsets s of the positive reals less than one to a unique real xs. Be as explicit as you
can. Hint: Interweave the bits. Be sure (but don’t prove) that for your construction, for
every s ∈ 2Nfinite, F (s) is valid real number and that if s and s′ ∈ 2Rfinite are different then
F (s) 6= F (s′).

• Answer: Let s be a finite subset of positive reals less than one. Because F (s) = xs can
be bigger than one and because n = |s| is a finite integer, let the integer part of xs be
|s|. Let the ith bit of the jth largest real in s specify the k = i × |s| + jth bit of xs. For
example, if s = {0.111..., 0.222..., 0.333...}. then xs = 3.123123123....

(b) A Hierarchy of infinities.

i. Prove that for every set U , the cardinality of 2U is strictly bigger than that of U , i.e. |2U | > |U |.
In our third definition of |2U | ≤ |U |, we argued that if each object u ∈ U is able to hit at
most one element F−1(u) = s ∈ 2U and this process manages to hit every element s ∈ 2U ,
then it follows that |2U | ≤ |U |. Conversely, we prove |2U | > |U |, by proving that ∀ inverse
functions F−1 from U ideally to 2U , ∃snew ∈ 2U ,∀u ∈ U,F−1(u) 6= snew.
Your proof should use the first order logic game between the adversary and the prover. Note
unlike the proof that |R| > |N |, the set U might not be countable and hence can’t be listed
and hence the diagonal can be visualized.
Hint: Woody Allen once said that he did not want to be a member of any club that would
have him as a member. In this spirit, for each person, put him in the heaven club iff he is
not in the club that is mapped to him.

• Answer: Let F−1(u) = su be an arbitrary mapping from an object u ∈ U ideally to a
subset su of U .
We construct as follows a set snew ∈ 2U . For each u ∈ U , there are two cases. If
F−1(u) = su ∈ 2U , then put u ∈ snew if an only if u is not in the set su. On the other
hand, if F−1(u) 6∈ 2U , then it does not matter if you put u in snew or not.
Let u be an arbitrary object in s.
We prove F−1(u) 6= snew as follows. There are two cases. If F−1(u) = su, then snew and
su differ in whether or not they contain u. Hence, snew 6= su = F−1(u). On the other
hand, F−1(u) 6∈ 2U , then clearly it is not equal to snew ∈ 2U .

ii. We can use the previous theorem that for every set U , |2U | > |U | to get many great results.
For example, if U is the set of natural numbers N , then we get that |2N | > |N | giving that the
set 2N of subsets of N is uncountable. (We did not prove it, but 2N has the same cardinality
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as the reals R.) As a second example, let U be the set of reals R, then we get that |2R| > |R|
giving that the set 2R of subsets of R is a bigger infinity than the number of reals. Prove by
that there are a hierarchy of an infinite number of different sizes of infinity.

• Answer: For each size of infinity, let U be a set of this cardinality. The theorem then
gives that 2U has an even bigger cardinality.

6. Computable and Describable Reals

(a) A real number x is said to be computable if there is a Java program that on input zero prints out
the decimal representation of x from left to right. Note that at no point in time will all of the
digits of x be printed out, but for each digit of x, there will be an eventual time at which this
digit will be printed out. Use the words taught in class to prove in one sentence whether or not
all real numbers computable.

• Answer: There are countably many Java program and uncountably many reals. Hence, most
reals are not computable.

(b) A real number x is said to be describable if it can be unambiguously denoted by a finite piece
of English text. For example, x = 2 is described as “Two” and x = Π as “The area of a circle
of radius one.” Use the words taught in class to prove in one sentence whether or not all real
numbers describable.

• Answer: There are countably many finite pieces of English text and uncountably many reals.
Hence, most reals are not describable.

(c) Prove that every computable real is also describable.

• Answer: Let x be a computable real that is output by a program P . The following is an
unambiguous denotation: “The real number output by P”.

(d) Prove whether or not there a real number that can be described, but not computed? “Let x be
the smallest real number that is not computable” is not a valid answer for the same real that “Let
x be the smallest real number that is bigger than zero” is ill defined. Hint: Use a diagonalization
proof.

• Answer: Consider the following description. “Let Mi be the ith Java description. For each i,
let ci be the ith character that Mi prints if it prints this many characters and zero otherwise.
Let x be the real number whose ith binary bit after the decimal is 0 iff ci = 1.” Clearly x is
describable because I just described it uniquely. It is not, however, computable because for
each i, the ith Java program has a different ith character than x’s ith bit.
We did not ask this, but it seems the same proof should prove that you can describe a real
that is not describable. Create a list of all describable reals based on the lexicographical order
of their descriptions, and then use diagonalization to find a new real not on the list. If this
new real is describable due to the previous sentence, then we seem to have a contradiction. I
guess there is a hierarchy of “descriptions”. You use a higher order description to describe a
real not describable by a lower order description.
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