
York University

CSE 2001 – Unit 1 First Order Logic
Instructor: Jeff Edmonds

Don’t cheat by looking at these answers prematurely.

1. For each prove whether true or not when each variable is a real value. Be sure to play the correct game
as to who is providing what value.

1) ∀x ∃y x+ y = 5 2) ∃y ∀x x+ y = 5
3) ∀x ∃y x · y = 5 4) ∀x ∃y x · y = 0
5) [∀x ∃y P (x, y)] ⇒ [∃y ∀x P (x, y)]
6) [∀x ∃y P (x, y)] ⇐ [∃y ∀x P (x, y)]
7) ∀a ∃y ∀x x · (y + a) = 0
8) ∃a ∀x ∃y [x = 0 or x · y = 5]

• Answer:

(a) ∀x ∃y x+ y = 5 is true. Let x be an arbitrary real value and let y = 5− x. Then x+ y = 5.

(b) ∃y ∀x x + y = 5 is false, because ∀y ∃x x + y 6= 5 is true. Let y be an arbitrary real value
and let x = 6− y. Then x+ y = 6 6= 5.

(c) ∀x ∃y x · y = 5 is false, because ∃x ∀y x · y 6= 5 is true. Let x = 0 and let y be an arbitrary
real value. Then x · y = 0 6= 5. Note that y must be 5

0
, which is impossible.

(d) ∀x ∃y x · y = 0 is true. Let x be an arbitrary real value and let y = 0. Then x · y = 0. The
odd thing about this example is that even though the value of y can depend on the value of
x, it does not. ∃y ∀x x · y = 0 is a stronger statement that is also true.

(e) [∀x ∃y P (x, y)] ⇒ [∃y ∀x P (x, y)] is false. Let P (x, y) = [x+ y = 5]. Then as seen above the
first is true and the second is false.

(f) [∀x ∃y P (x, y)] ⇐ [∃y ∀x P (x, y)] is true. Assume the right is true. Let y0 the that for which
[∀x P (x, y0)] is true. We prove the left as follows. Let x be an arbitrary real value and let
y = y0. Then P (x, y0) is true.

(g) ∀a ∃y ∀x x · (y + a) = 0 is true. Let a be an arbitrary real value. Let y = −a. Let x be an
arbitrary real value. Then x x · (y + a) = 0 is true.

(h) ∃a ∀x ∃y [x = 0 or x ·y = 5] is true. Let a = 0. Let x be an arbitrary real value. If x = 0 then
[x = 0 or x · y = 5] is true because of the left. If x 6= 0 then let y = 5

x
and [x = 0 or x · y = 5]

is true because of the right.

2. The game Ping has two rounds. Player-A goes first. Let mA
1

denote his first move. Player-B
goes next. Let mB

1
denote his move. Then player-A goes mA

2
and player-B goes mB

2
. The relation

AWins(mA
1
,mB

1
,mA

2
,mB

2
) is true iff player-A wins with these moves.

(a) Use universal and existential quantifiers to express the fact that player-A has a strategy in which
he wins no matter what player-B does. Use mA

1
,mB

1
,mA

2
,mB

2
as variables.

(b) What steps are required in the Prover/Adversary technique to prove this statement?

(c) What is the negation of the above statement in standard form?

(d) What steps are required in the Prover/Adversary technique to prove this negated statement?

• Answer: Regarding the game Ping.

(a) The statement that player-A has a strategy in which he wins no matter what player-B does is
∃mA

1
∀mB

1
∃mA

2
∀mB

2
AWins(mA

1
,mB

1
,mA

2
,mB

2
). His strategy specifies his first move mA

1
. Then

for each move mB
1

his opponent makes, he must specify his next move mA
2
. This must lead

to a win no matter what his opponents next move is.

1



(b) The Prover/Adversary technique to prove this statement is a strategy for the prover to win
the following game. The prover gives mA

1
, the adversary give mB

1
, the prover gives mA

2
, the

adversary give mB
2
, and the prover wins if AWins(mA

1
,mB

1
,mA

2
,mB

2
) is true.

(c) The negation of the above statement is ∀mA
1
∃mB

1
∀mA

2
∃mB

2
¬AWins(mA

1
,mB

1
,mA

2
,mB

2
).

(d) The Prover/Adversary technique to prove this negated statement is a strategy for the prover
to win the game when he takes the role of player-B.

3. Let Works(P,A, I) to true if algorithm A halts and correctly solves problem P on input instance I.
Let P = Halting be the Halting problem which takes a Java program I as input and tells you whether
or not it halts on the empty string. Let P = Sorting be the sorting problem which takes a list of
numbers I as input and sorts them. For each part, explain the meaning of what you are doing and
why you don’t do it another way.

Extra:
Let Ainsertionsort be the sorting algorithm which we learned in class.
Let Ayes be the algorithm that on input I ignores the input and simply halts and says “yes”.
Let A∞ be the algorithm that on input I ignores the input and simply runs for ever.

(a) Recall that a problem is computable if and only if there is an algorithm that halts and returns the
correct solution on every valid input. Express in first order logic that Sorting is computable.

(b) Express in first order logic that Halting is not computable.

(c) Express in first order logic that there are uncomputable problems.

(d) What does the following mean and either prove or disprove it: ∀I, ∃A,Works(Halting,A, I).
(Not simply by saying the same in words “For all I, exists A, Works(Halting,A, I)”)

(e) What does the following mean and either prove or disprove it ∀A, ∃P, ∀I,Works(P,A, I). Hint:
An algorithm A on an input I can either halt and give the correct answer, halt and give the wrong
answer, or run for ever.

• Answer:

(a) ∃A, ∀I,Works(Sorting,A, I). We know that there at least one algorithm, eg. A = mergesort,
that works for every input instance I.

(b) ∀A, ∃I,¬Works(Halting,A, I) We know that opposite statement is true. Every algorithm
fails to work for at least one input instance I.

(c) ∃P, ∀A, ∃I,¬Works(P,A, I)

(d) It says that every input has some algorithm that happens to output the right answer. It is
true. Consider an arbitrary instance I. If on instance I, Halting happens to say yes, then
let A be the algorithm that simply halts and says “yes”. Otherwise, let A be the algorithm
that simply halts and says “no”. Either way A “works” for this instance I.

(e) It says that every algorithm correctly solves some problem. This is not true be-
cause some algorithm do not halt on some input instances. We prove the complement
∃A, ∀P, ∃I,¬Works(P,A, I) as follows. Let A be an algorithm that runs for ever on some
instance I ′. Let P be an arbitrary problem. Let I be an instance I ′ on which A does not
halt. Note Works(P,A, I) is not true.

4. First Order Logic:
Let P be some computable problem,
k an integer,
A an algorithm (Java Program),
and I an input string.
Let Lines(A, I) = k to be the statement that algorithm A has k actual lines of code (in the print out
of the program) when run on input I.
Let A(I) = L(I) to be the statement that A gives the correct answer for P on input I.

2



For each of the following first order logic statements, is it true and what are the ramifica-
tions/consequences of this with respect to solving P? i.e. why is it true/false.
The types of things that the first order logic will say are “Computable means that a fixed algorithm
can get the right answer on each and every input” and “The number of lines of code does not change
with the input.”

(a) ∃k, ∃A, ∀I, Lines(A, I) = k and A(I) = P (I)

• Answer: True. The algorithm designer can build an algorithm A with some number k of
lines and then no matter what the input I, this A will solve P with this number of lines.

(b) ∀k, ∃A, ∀I, Lines(A, I) = k

• Answer: True. The algorithm designer can build an algorithm with any number k of lines
and then this number is fixed as the input grows.

(c) ∀A, ∃k, ∀I, Lines(A, I) = k

• Answer: True. Each algorithm has a fixed number of lines that does not change as the input
grows.

(d) ∀k, ∃A, ∀I, Lines(A, I) = k and A(I) = P (I)

• Answer: False. There is some minimum number of lines that the algorithm needs below
which it can’t solve P .

(e) ∀I, ∃A, A(I) = P (I)

• Answer: True even for undecidable problems A. It is not a good statement because there
should not be a different algorithm for each input I. One of Ayes or Ano happens to get the
right answer for this I.

(f) ∀A, ∃I, A(I) 6= P (I)

• Answer: False. This is stating that P is not computable because no algorithm solves it for
every input.

3


