$EECS\ 1090-Test\ 1$

Instructor: Jeff Edmonds

1. (20 marks) Fill out the table with all of the rules.

	Proof Techniques/Lemmas				
	Using		Proving		
	From:	Conclude	From:	Conclude	
And ∧:	Separating And		Eval/Build/Simplify \(\)		
Or V:	Selecting Or		Eval/Build/Simplify ∨		
	Cases		Excluded Middle		
Implies →:	Modus Ponens		Deduction		
	Cases		Eval/Build	$Eval/Build/Simplify \rightarrow$	
			·		
	Equivalence		Contra	Contrapositive	
	Transitivity		De More	De Morgan's Law	
		1011103	Do More	5000 5 20011	

2. (13 marks) Find all possible assignments of the variables that makes the following expression true/satisfied.

Explain all of the steps in your search for the assignment and in proving that this assignment works. Use Purple table reasoning, not a table.

Hint: Start with proof/search by cases with the $p \lor q$, then see how you can force the values of other variables.

$$[p \vee q] \wedge [p \to s] \wedge [\neg p \vee \neg s] \wedge [t \to \neg q] \wedge [u \vee t] \wedge [u \oplus v] \wedge [w \to \neg w] \wedge [y \to (x \wedge \neg x)].$$

How many different satisfying assignments are there?

3. Nicer Father

(a) (8 marks) It is not true that

$$[(\alpha \rightarrow \gamma) \ and \ (\beta \rightarrow \gamma)] \ iff \ [(\alpha \ and \ \beta) \rightarrow \gamma].$$

Thinking of \rightarrow as causality, argue in English as you would to someone who does not know logic why this statement is false.

- (b) Use the purple table to prove the following two statements. Use deduction. Do NOT convert the \to into and or or.
 - i. (13 marks) $[(\alpha \to \gamma) \ and \ (\beta \to \gamma)] \to [(\alpha \ or \ \beta) \to \gamma].$

ii. (13 marks) $[(\alpha \to \gamma) \ and \ (\beta \to \gamma)] \leftarrow [(\alpha \ or \ \beta) \to \gamma].$

(c) (7 marks) Jeff told a story about a grumpy father, doing well at school, following rules, and being loved. Change the contract of the father to be $[(\alpha \to \gamma) \ and \ (\beta \to \gamma)]$. How is this father different than in Jeff's story.

- 4. (13 marks) The game Ping has two rounds. Player-A goes first. Let m_1^A denote his first move. Player-B goes next. Let m_1^B denote his move. Then player-A goes m_2^A and player-B goes m_2^B . The relation $AWins(m_1^A, m_1^B, m_2^A, m_2^B)$ is true iff player-A wins with these moves.
 - Use universal and existential quantifiers to express the fact that player-A has a strategy in which she wins no matter what player-B does. Use $m_1^A, m_1^B, m_2^A, m_2^B$ as variables. Explain.

5. (13 marks) We say that the sequence $f = f(1), f(2), f(3), \ldots$ converges if $\exists c \ \forall \epsilon > 0 \ \exists n_0 \ \forall n \geq n_0 \ |f(n) - c| \leq \epsilon$.

Play the Jeff's game in order to prove that the sequence $f = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$, i.e., $f(i) = \frac{1}{i}$ converges.