1.1 Propositional Logic 13

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
V, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 16.

EXAMPLE 16 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 10110110 and
110001 1101. (Here, and throughout this book, bit strings will be split into blocks of four bits

to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011  bitwise XOR

Exercises

. Which of these sentences are propositions? What are the
truth values of those that are propositions?

a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.

¢) 2+3=5.
d) 5+7=10.
e) x+2=11.

f) Answer this question.

. Which of these are propositions? What are the truth
values of those that are propositions?

a) Do not pass go.

b) What time is it?

¢) There are no black flies in Maine.

d) 4+x=5.

e) The moon is made of green cheese.

f) 2" > 100.

. What is the negation of each of these propositions?
a) Linda is younger than Sanjay.

b) Mei makes more money than Isabella.
¢) Moshe is taller than Monica.

d) Abby is richer than Ricardo.

. What is the negation of each of these propositions?

a) Janice has more Facebook friends than Juan.
b) Quincy is smarter than Venkat.

¢) Zelda drives more miles to school than Paola.
d) Briana sleeps longer than Gloria.

. What is the negation of each of these propositions?

a) Mei has an MP3 player.

b) There is no pollution in New Jersey.

c) 2+1=3.

d) The summer in Maine is hot and sunny.

. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.

¢) Abby sent more than 100 text messages yesterday.
d) 121 is a perfect square.

. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.

¢) 7-11-13=999.

d) Diane rode her bicycle 100 miles on Sunday.

. Suppose that Smartphone A has 256 MB RAM and

32 GB ROM, and the resolution of its camera is 8 MP;
Smartphone B has 288 MB RAM and 64 GB ROM, and
the resolution of its camera is 4 MP; and Smartphone C
has 128 MB RAM and 32 GB ROM, and the resolution
of its camera is 5 MP. Determine the truth value of each
of these propositions.

a) Smartphone B has the most RAM of these three
smartphones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

¢) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

. Suppose that during the most recent fiscal year, the an-

nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.
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a) Quixote Media had the largest annual revenue.

b) Nadir Software had the lowest net profit and Acme
Computer had the largest annual revenue.

¢) Acme Computer had the largest net profit or Quixote
Media had the largest net profit.

d) If Quixote Media had the smallest net profit, then
Acme Computer had the largest annual revenue.

e) Nadir Software had the smallest net profit if and only
if Acme Computer had the largest annual revenue.

Let p and g be the propositions

p: I bought a lottery ticket this week.

q: I won the million dollar jackpot.
Express each of these propositions as an English sen-
tence.

a) —p b) pvg ¢) p—gq
d) prg e) peg f) p——q
g PATq h) -pv(pA g

Let p and g be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) g b) pAg ¢) pVgq
d) p—> g e) 7g—p f) -p—>q
g pe g h) pA(pV ~q)

Let p and g be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) —p b) pvygq

¢) PAg d) g—p

e) 7g—> p f) p—->g

g pegq h) ~gVv(pA q

Let p and g be the propositions
p: It is below freezing.
q: It is snowing.
Write these propositions using p and ¢ and logical con-
nectives (including negations).
a) Itis below freezing and snowing.
b) Itis below freezing but not snowing.
¢) Itis not below freezing and it is not snowing.
d) Itis either snowing or below freezing (or both).
e) Ifitis below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is
not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient
for it to be snowing.
Let p, g, and r be the propositions
p: You have the flu.
q: You miss the final examination.
r: You pass the course.
Express each of these propositions as an English sen-
tence.
a) p—=gq
¢c) g— r
e) (p—>nVig— )

b) g o r
d) pvgvr
£) @AV (gAr)
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Let p and g be the propositions

p: You drive over 65 miles per hour.
q: You get a speeding ticket.
Write these propositions using p and g and logical con-
nectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get
a speeding ticket.
¢) You will get a speeding ticket if you drive over
65 miles per hour.
d) If you do not drive over 65 miles per hour, then you
will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting
a speeding ticket.
f) You get a speeding ticket, but you do not drive over
65 miles per hour.
g) Whenever you get a speeding ticket, you are driving
over 65 miles per hour.

Let p, ¢, and r be the propositions

p: You get an A on the final exam.
q: You do every exercise in this book.
r: You get an A in this class.

Write these propositions using p, ¢, and r and logical con-

nectives (including negations).

a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in
this book, and you get an A in this class.

¢) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

Let p, ¢, and r be the propositions

p: Grizzly bears have been seen in the area.
q: Hiking is safe on the trail.
r: Berries are ripe along the trail.

Write these propositions using p, ¢, and r and logical con-

nectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

¢) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) Itisnotsafe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but
not sufficient that berries not be ripe along the trail
and for grizzly bears not to have been seen in the area.
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f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

Determine whether these biconditionals are true or

false.

a) 2+ 2=4ifandonlyif 1 +1=2.

b) 1+1=2ifand onlyif 2 +3 = 4.

¢) 1+ 1 =3 if and only if monkeys can fly.

d) 0> lifand onlyif 2 > 1.

Determine whether each of these conditional statements

is true or false.

a) If1+1=2,then2+2=5.

b) If 1+1=3,then2 +2=4.

c) If1+1=3,then2+2=>5.

d) If monkeys can fly, then 1 4+ 1 = 3.

Determine whether each of these conditional statements

is true or false.

a) If 1 + 1 = 3, then unicorns exist.

b) If 1 + 1 = 3, then dogs can fly.

c¢) If 1+ 1 =2, then dogs can fly.

d) If2+2=4,thenl1+2=3.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

¢) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

¢) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

For each of these sentences, state what the sentence

means if the logical connective or is an inclusive or (that

is, a disjunction) versus an exclusive or. Which of these
meanings of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,
you get $2000 back in cash or a 2% car loan.

¢) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than two feet of snow falls or
if the wind chill is below —100 °F.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) Itis necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.
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¢) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right
people.

g) Carol gets seasick whenever she is on a boat.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to

express conditional statements. ]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for
a week.

¢) That the Pistons win the championship implies that
they beat the Lakers.

d) Itis necessary to walk eight miles to get to the top of
Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world
famous.

f) If you drive more than 400 miles, you will need to
buy gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.

i) We will have a future, provided that people believe in
science.

Write each of these statements in the form “if p, then ¢”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

¢) If youkeep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their
goalie plays well.

e) That you get the job implies that you had the best cre-
dentials.

f) The beach erodes whenever there is a storm.

g) It is necessary to have a valid password to log on to
the server.

h) You will reach the summit unless you begin your
climb too late.

i) You will get a free ice cream cone, provided that you
are among the first 100 customers tomorrow.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and suffi-
cient that you have the only winning ticket.

¢) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I
take it.
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Write each of these propositions in the form “p if and

only if ¢” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

¢) Itrains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

e) My airplane flight is late exactly when I have to catch
a connecting flight.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows today, I will ski tomorrow.

b) Icome to class whenever there is going to be a quiz.

¢) A positive integer is a prime only if it has no divisors
other than 1 and itself.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) I go to the beach whenever it is a sunny summer day.

¢) When I stay up late, it is necessary that I sleep until
noon.

How many rows appear in a truth table for each of these

compound propositions?

a) p—-p

b) (pv-r)A(gV -s)

¢) gVpV-sVarv-atvu

d) pATrAD o (@AD

How many rows appear in a truth table for each of these

compound propositions?

a) (g —>p)V(Ep—>9)

b) @V -t)A@PV-s)

¢c) porV(Es— )V (u—v)

d) PAFrAS)IV(GADV(rA-L)

Construct a truth table for each of these compound propo-

sitions.

a) pAp

¢ (PV=q) —q

e) (p—q) < (2qg—~p)
) p=d->@G-p
Construct a truth table for each of these compound propo-
sitions.

a) p—-p

) pdPVa

e (g—= )= Peq
f) peop@®p g
Construct a truth table for each of these compound propo-
sitions.

a) pvg - Pdq
) PV ®PAq)
e) P g ®(per)
f) p@q - Pd—q

b) pv-p
d @pve—P@Arg

b) pep
d @prAg)—> PV

b) p®q) - PAg)
d peg®(pe g
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Construct a truth table for each of these compound propo-
sitions.

a) p®dp b) p®-p
¢c) p®dq d) p®—q
e) Pp&PV(Pd—q ) p®PAQP®—q)

Construct a truth table for each of these compound propo-
sitions.

a) p—q

) p=>qV(Ep—q)
e) peoqV(peq
f) (peog) @9
Construct a truth table for each of these compound propo-
sitions.

b) p<gq
d) p->g9ACEp—0q

a) pvgVr b) Vg Ar
c) (pAqQ VT d pAg AT
e) (pVg AT f) pAg V-

Construct a truth table for each of these compound propo-
sitions.

a) p—>(gVvr)

b) =p—(q—r)

) p=>q)V(p—r)

d p->gA(Ep—r)

e) (poq)V(nger)

f) (po-gpeo@ern

Construct a truth table for (p = g) = r) = s.
Construct a truth table for (p < g) < (r < ).

Explain, without using a truth table, why (p V =g) A
(g vV =r) A (rV —p) is true when p, ¢, and r have the same
truth value and it is false otherwise.

Explain, without using a truth table, why (p VgV r)A
(=p V =gV —r) is true when at least one of p, g, and r is
true and at least one is false, but is false when all three
variables have the same truth value.

If py, py, ..., p, are n propositions, explain why

n=1 n

/\ /\ p: VD))

i=1 j=i+1

is true if and only if at most one of py, p,, ..., p, is true.
Use Exercise 44 to construct a compound proposition
that is true if and only if exactly one of the proposi-
tions py, py, ..., p, is true. [Hint: Combine the compound
proposition in Exercise 44 and a compound proposition
that is true if and only if at least one of p, p,, ..., p, is
true. ]

What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) ifx+2=3thenx:=x+1

b) f (x+1=3)OR(2x+2=3)thenx :=x+1

¢) if(2x+3=5)AND 3x+4="7)thenx :=x+1

d) if(x+1=2)XOR(x+2=3)thenx:=x+1

e) ifx<2thenx:=x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 0100001

b) 11110000, 1010 1010

¢) 0001110001, 100100 1000
d) 1111111111, 00 0000 0000



48. Evaluate each of these expressions.
a) 11000 A (01011 Vv 11011)
b) (01111 A 10101) v 0 1000
¢) (01010 11011) 6 01000
d) (11011v01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a

proposition has a truth value that is a number between 0 and

1, inclusive. A proposition with a truth value of 0 is false and

one with a truth value of 1 is true. Truth values that are be-

tween 0 and 1 indicate varying degrees of truth. For instance,
the truth value 0.8 can be assigned to the statement “Fred is
happy,” because Fred is happy most of the time, and the truth
value 0.4 can be assigned to the statement “John is happy,”
because John is happy slightly less than half the time. Use

these truth values to solve Exercises 49-51.

49. The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy”’?

50. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements

51.
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“Fred and John are happy” and “Neither Fred nor John is
happy”?

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy”?

Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

¢) Answer part (b) assuming that the list contains 99
statements.

An ancient Sicilian legend says that the barber in a remote
town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

Applications of Propositional Logic

1.2.1 Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to ver-
ify the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

1.2.2 Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of
the sentence. Moreover, once we have translated sentences from English into logical expres-
sions, we can analyze these logical expressions to determine their truth values, we can manip-
ulate them, and we can use rules of inference (which are discussed in Section 1.6) to reason

about them.

To illustrate the process of translating an English sentence into a logical expression, con-

sider Examples 1 and 2.
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p pVr
o f N\ PV ACpV@GVn)
» _/ v

q “pV(gV-r)
r qV r

-7

FIGURE 3 The circuit for (p V =r) A (—p V(g V —r)).

Build a digital circuit that produces the output (p V =r) A (=p V (g V —r)) when given input bits

Solution: To construct the desired circuit, we build separate circuits for p vV =r and for -p Vv (¢ vV
=r) and combine them using an AND gate. To construct a circuit for p V —r, we use an inverter
to produce =7 from the input . Then, we use an OR gate to combine p and —r. To build a circuit
for =p Vv (¢ Vv —r), we first use an inverter to obtain —r. Then we use an OR gate with inputs ¢
and —r to obtain g V —r. Finally, we use another inverter and an OR gate to get =p V (g V —r)

To complete the construction, we employ a final AND gate, with inputs p V =r and —p V
(g v —r). The resulting circuit is displayed in Figure 3. <4

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,

EXAMPLE 11
p, ¢, and r.
from the inputs p and g Vv —r.
and with different notation.
Exercises

In Exercises 1-6, translate the given statement into proposi-
tional logic using the propositions provided.

1.

You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

. You can see the movie only if you are over 18 years old

or you have the permission of a parent. Express your an-
swer in terms of m: “You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

. You can graduate only if you have completed the require-

ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” : “You have com-
pleted the requirements of your major,” and b: ““You have
an overdue library book.”

. To use the wireless network in the airport you must pay

the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the
wireless network in the airport,” d: “You pay the daily
fee,” and s: “You are a subscriber to the service.”

. You are eligible to be President of the U.S.A. only if you

are at least 35 years old, were born in the U.S.A., or at the

time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A.,” p: “At the time of your
birth, both of your parents were citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

. You can upgrade your operating system only if you have a

32-bit processor running at 1 GHz or faster, at least 1 GB
RAM, and 16 GB free hard disk space, or a 64-bit pro-
cessor running at 2 GHz or faster, at least 2 GB RAM,
and at least 32 GB free hard disk space. Express your an-
swer in terms of u: “You can upgrade your operating sys-
tem,” b3,: ““You have a 32-bit processor,” bg,: “You have
a 64-bit processor,” g,: “Your processor runs at 1 GHz or
faster,” g,: ““Your processor runs at 2 GHz or faster,” r;:
“Your processor has at least 1 GB RAM,” r,: “Your pro-
cessor has at least 2 GB RAM,” h4: “You have at least
16 GB free hard disk space,” and h5,: “You have at least
32 GB free hard disk space.”

. Express these system specifications using the proposi-

tions p: “The message is scanned for viruses” and ¢: “The
message was sent from an unknown system” together
with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”
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b) “The message was sent from an unknown system but
it was not scanned for viruses.”

¢) “Itis necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown sys-
tem it is not scanned for viruses.”

Express these system specifications using the proposi-
tions p: “The user enters a valid password,” ¢g: “Access
is granted,” and r: “The user has paid the subscription
fee” and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

¢) “Accessis denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is in
interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”

Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed. The router
does not support the new address space.”

Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If the
file system is not locked, then new messages will be sent
to the message buffer. New messages will not be sent to
the message buffer.”

What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking in Virginia, but not in
West Virginia?

What Google search would you use to look for Web pages
relating to Ethiopian restaurants in New York or New
Jersey?

16. What Google search would you use to look for men’s

17

18

*19

20.

21

22,

shoes or boots not designed for work?

Suppose that in Example 7, the inscriptions on Trunks 1,
2, and 3 are “The treasure is in Trunk 3,” “The treasure is
in Trunk 1,” and “This trunk is empty.” For each of these
statements, determine whether the Queen who never
lies could state this, and if so, which trunk the treasure
isin.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”

¢) “Exactly two of the inscriptions are true.”

d) “All three inscriptions are true.”

Suppose that in Example 7 there are treasures in two of
the three trunks. The inscriptions on Trunks 1, 2, and 3
are “This trunk is empty,” “There is a treasure in Trunk
1,” and “There is a treasure in Trunk 2.” For each of these
statements, determine whether the Queen who never lies
could state this, and if so, which two trunks the treasures
are in.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”
¢) “Exactly two of the inscriptions are true.”
d) “All three inscriptions are true.”

Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?” The first
professor says “I do not know.” The second professor then
says “I do not know.” Finally, the third professor says
“No, not everyone wants coffee.” The hostess comes back
and gives coffee to the professors who want it. How did
she figure out who wanted coffee?

When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends. You know that if Jasmine attends, she will
become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless
Jasmine also does. Which combinations of these three
friends can you invite so as not to make someone un-

happy?



Exercises 23-27 relate to inhabitants of the island of knights

and knaves created by Smullyan, where knights always tell the

truth and knaves always lie. You encounter two people, A and

B. Determine, if possible, what A and B are if they address you

in the ways described. If you cannot determine what these two

people are, can you draw any conclusions?

23. A says “At least one of us is a knave” and B says nothing.

24. A says “The two of us are both knights” and B says “A is
a knave.”

25. A says “l am a knave or B is a knight” and B says nothing.
26. Both A and B say “I am a knight.”
27. A says “We are both knaves” and B says nothing.
Exercises 28-35 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible so-
lutions or state that there are no solutions.

28. A says “C is the knave,” B says “A is the knight,” and C
says “I am the spy.”

29. A says “I am the knight,” B says “I am the knave,” and C
says “B is the knight.”

30. A says “I am the knave,” B says “I am the knave,” and C
says “I am the knave.”

31. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

32. A says “I am the knight,” B says “A is not the knave,” and
C says “B is not the knave.”

33. A says “I am the knight,” B says “I am the knight,” and C
says “I am the knight.”

34. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

35. A says “I am not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 3642 are puzzles that can be solved by translating

statements into logical expressions and reasoning from these

expressions using truth tables.

36. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he
saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?
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37. Steve would like to determine the relative salaries of three
coworkers using two facts. First, he knows that if Fred
is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then
Maggie is paid the most. Is it possible to determine the
relative salaries of Fred, Maggie, and Janice from what
Steve knows? If so, who is paid the most and who the
least? Explain your reasoning.

38. Five friends have access to a chat room. Is it possible to
determine who is chatting if the following information is
known? Either Kevin or Heather, or both, are chatting.
Either Randy or Vijay, but not both, are chatting. If Abby
is chatting, so is Randy. Vijay and Kevin are either both
chatting or neither is. If Heather is chatting, then so are
Abby and Kevin. Explain your reasoning.

39. A detective has interviewed four witnesses to a crime.
From the stories of the witnesses the detective has con-
cluded that if the butler is telling the truth then so is the
cook; the cook and the gardener cannot both be telling
the truth; the gardener and the handyman are not both ly-
ing; and if the handyman is telling the truth then the cook
is lying. For each of the four witnesses, can the detec-
tive determine whether that person is telling the truth or
lying? Explain your reasoning.

40. Four friends have been identified as suspects for an unau-
thorized access into a computer system. They have made
statements to the investigating authorities. Alice said,
“Carlos did it.” John said, “I did not do it.” Carlos said,
“Diana did it.” Diana said, “Carlos lied when he said that
Ididit.”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain
your reasoning.

b) If the authorities also know that exactly one is lying,
who did it? Explain your reasoning.

41. Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”’; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

*42. Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with

Links ) different nationalities and with different jobs live in con-

secutive houses on a street. These houses are painted
different colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and
whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is im-
mediately to the right of the white one. The photographer
breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
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blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

Freedonia has 50 senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the
Freedonian senators is honest and that, given any two
Freedonian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators are
honest and how many are corrupt? If so, what is the answer?

Find the output of each of these combinatorial circuits.
a) p

q
b,

P

q

Propositional Equivalences

45.

46.

47.

Find the output of each of these combinatorial circuits.

a) P

b »

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p A 71r) V (2g A r) from input bits p, g, and .

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(=pV-r)A=q)V (7p A(g V r)) from input bits p, g,
and r.

1.3.1 Introduction

Definition 1

EXAMPLE 1

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
aspAgq.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a con-
tradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p V =p and p A =p, shown in Table 1. Because p V —p is always
true, it is a tautology. Because p A —p is always false, it is a contradiction. <
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Exercises

10.

B

L5 12,

. Use truth tables to verify these equivalences.

a) pAT=p b) pvF=p
¢c) pAF=F d pvT=T
€ pVp=p f) pAp=p

. Show that =(—p) and p are logically equivalent.
. Use truth tables to verify the commutative laws

a) pvVg=qVp. b) pAg=qAp.

. Use truth tables to verify the associative laws

a) pvqgVr=pv(gVr).
b) pAgQ)Ar=pA(@AT).

. Use a truth table to verify the distributive law

pPA@VI)=Q@AQYV (PAT).

. Use a truth table to verify the first De Morgan law

“(pAg)=-pVq.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.
¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

. For each of these compound propositions, use the

conditional-disjunction equivalence (Example 3) to find
an equivalent compound proposition that does not in-
volve conditionals.

a) p—q

b) p—>q) —r

©) (=g =>p) =P —>9

For each of these compound propositions, use the
conditional-disjunction equivalence (Example 3) to find
an equivalent compound proposition that does not in-
volve conditionals.

a) p =g

b) (pvg) —p

¢ (=9 —=>(r-9

Show that each of these conditional statements is a tau-
tology by using truth tables.

a) pAg) —p
) p->pP-q d prg —>P-9

e (p—q —p f) -9 —->—q

Show that each of these conditional statements is a tau-
tology by using truth tables.

a) ["pA(pVYl—q

b) [(p—>PA(@—=>1]—={@P—r)
o) IpAP—->9l—gq

d) [pVeApp—=rA(g->1]-r

b) p—> (Vg

13.

14.

15.

16.

17.

18.
Lo 19,

Show that each conditional statement in Exercise 11 is
a tautology using the fact that a conditional statement is
false exactly when the hypothesis is true and the conclu-
sion is false. (Do not use truth tables.)

Show that each conditional statement in Exercise 12 is
a tautology using the fact that a conditional statement is
false exactly when the hypothesis is true and the conclu-
sion is false. (Do not use truth tables.)

Show that each conditional statement in Exercise 11 is a
tautology by applying a chain of logical identities as in
Example 8. (Do not use truth tables.)

Show that each conditional statement in Exercise 12 is a
tautology by applying a chain of logical identities as in
Example 8. (Do not use truth tables.)

Use truth tables to verify the absorption laws.

a) pv(pAg=p b) pA(pVg) =p
Determine whether (=p A (p = ¢g)) — —¢ is a tautology.
Determine whether (=g A (p — ¢)) — —p is a tautology.

Each of Exercises 20-32 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for ex-
actly the same combinations of truth values of the proposi-
tional variables in these expressions (whichever is easier).

20.

21.
22.
23.
24.
25.
26.

27.

28.

29.

30.

31.

32.
33.
L34,
35.

36.

Show that p < ¢g and (p A q) V (-p A =q) are logically
equivalent.

Show that =(p < ¢) and p < —¢q are logically equivalent.
Show that p — ¢ and =g — —p are logically equivalent.
Show that =p < g and p < —g are logically equivalent.
Show that =(p @ ¢) and p < ¢ are logically equivalent.
Show that =(p < ¢) and —p < ¢ are logically equivalent.
Show that (p - g) A(p = r) and p — (g A1) are logi-
cally equivalent.

Show that (p - r) A(g — r) and (p V q) — r are logi-
cally equivalent.
Show that (p - g¢) V(p — r) and p — (g V r) are logi-
cally equivalent.

Show that (p — r)V (g — r) and (p A g) — r are logi-
cally equivalent.

Show that -p — (¢ — r) and g — (p Vv r) are logically
equivalent.

Show that p < g and (p — g) A (¢ — p) are logically
equivalent.

Show that p < g and =p < g are logically equivalent.
Show that (p — g) A (g = r) — (p — r) is a tautology.
Show that (p V g) A (-p V r) = (g V r) is a tautology.
Show that (p — ¢) — randp — (¢ — r) are not logically
equivalent.

Show that (p A ¢) — rand (p — r) A (g — r) are not log-
ically equivalent.
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Show that (p—>¢q)— (—s) and

(g — s) are not logically equivalent.

p—-r)—

The dual of a compound proposition that contains only the
logical operators V, A, and = is the compound proposition
obtained by replacing each Vv by A, each A by Vv, each T
by F, and each F by T. The dual of s is denoted by s*.

38.

39.

40.
41.
42.

#3 43,

4.

45.
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Find the dual of each of these compound propositions.

a) pVq b) pA(gV(rAT))

¢ (pA=q)V(gAF)

Find the dual of each of these compound propositions.
a) pATgA-F b) pAgAP) VS

¢ pVE)A(@gVT)

When does s* = s, where s is a compound proposition?
Show that (s*)* = s when s is a compound proposition.

Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

Why are the duals of two equivalent compound propo-
sitions also equivalent, where these compound proposi-
tions contain only the operators A, V, and =?

Find a compound proposition involving the propositional
variables p, ¢, and r that is true when p and ¢ are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

Find a compound proposition involving the propositional
variables p, g, and r that is true when exactly two of p, ¢,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

Suppose that a truth table in n propositional variables is
specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent
to a compound proposition involving only these logical oper-
ators.

47.

*48.

*49,

Show that =, A, and V form a functionally complete col-
lection of logical operators. [Hint: Use the fact that ev-
ery compound proposition is logically equivalent to one
in disjunctive normal form, as shown in Exercise 46.]
Show that = and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p Vv ¢q is logically equivalent to
“(pAg).]

Show that = and V form a functionally complete collec-
tion of logical operators.

We now present a group of exercises that involve the logical
operators NAND and NOR. The proposition p NAND g is true
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when either p or g, or both, are false; and it is false when both p
and ¢ are true. The proposition p NOR ¢ is true when both
p and q are false, and it is false otherwise. The propositions
p NAND g andp NOR g are denoted by p | gandp | g, respec-
tively. (The operators | and | are called the Sheffer stroke and
the Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

50.
51.
52.
53.
54.

*55.

56.

57.

58.

*59.

60.

61.

62.

63.

64.

65.

Construct a truth table for the logical operator NAND.

Show that p | g is logically equivalent to =(p A g).

Construct a truth table for the logical operator NOR.

Show that p | g is logically equivalent to =(p V g).

In this exercise we will show that {]} is a functionally

complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Show that (p | q) | (p | ¢) is logically equivalent to
Vg

¢) Conclude from parts (a) and (b), and Exercise 49, that
{1} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator |.

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | ¢ and ¢ | p are equivalent.

Show that p | (¢ | r) and (p | ¢) | r are not equivalent, so

that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and ¢?

Show that if p, g, and r are compound propositions such

that p and g are logically equivalent and g and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the sys-

tem is not in its initial state.” This specification is hard

to understand because it involves two conditional state-

ments. Find an equivalent, easier-to-understand specifi-

cation that involves disjunctions and negations but not

conditional statements.

How many of the disjunctions pV g, -pVgq, gVr,

q V —r, and =g V —r can be made simultaneously true by

an assignment of truth values to p, g, and r?

How many of the disjunctions p V=g Vs, =p V =r Vs,

SpVorvas, pvVgvos, gVrvos, gvVorVoos,

“pV-gV-s,pVrVs,and pVr V-s can be made si-

multaneously true by an assignment of truth values to p,

q, r,and s?

Show that the negation of an unsatisfiable compound

proposition is a tautology and the negation of a com-

pound proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions

is satisfiable.

a) (pV=g) APV @ A(pV—gq)

b) p—> AP > AEp— g AP~ q)

O pepA(peq
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Determine whether each of these compound propositions
is satisfiable.
a) VgV rAPVY-gV-as)APV-orv-as)Aa
(pV gV )A(P VgV )
b) (pVgVr)A(FpVgVas)A(p VgV s)A
(pVarvas)yA(pvgV-r)A@yV-ryV-s)
¢) pVgVNAPVgVs)A@V-rVs) A(EpV
rV)AEPVGVS)APYV gV -r) A(CpV
gV s)A(mpVaryVas)
Find the compound proposition Q constructed in Exam-
ple 10 for the n-queens problem, and use it to find all the
ways that n queens can be placed on an n X n chessboard,
so that no queen can attack another when 7 is

a) 2. b) 3. c) 4.

Starting with the compound proposition Q found in Ex-
ample 10, construct a compound proposition that can be

Predicates and Quantifiers

69.

70.

71.

*72.

used to find all solutions of the n-queens problem where
the queen in the first column is in an odd-numbered row.

Show how the solution of a given 4 X 4 Sudoku puzzle
can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 X9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the com-
pound proposition given in the text that asserts that
every column of a 9Xx9 Sudoku puzzle contains
every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of
the nine 3 X 3 blocks of a 9 X 9 Sudoku puzzle contains
every number.

1.4.1 Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we can-
not use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason
with statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

1.4.2 Predicates

Statements involving variables, such as

“x > 3’” “x — y + 3:’

“x+y — Z,”
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Prolog answers queries using the facts and rules it is given. For example, using the facts

and rules listed, the query

?2enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin
kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches (X, juana)

This query returns

patel
grossman <
Exercises
1. Let P(x) denote the statement “x < 4.” What are these a) IxP(x) b) VxP(x)
truth values? ¢) dx-P(x) d) Vx-P(x)

a) P(0) b) P(4) ©) P(6)

. Let P(x) be the statement “The word x contains the

letter a.” What are these truth values?

a) P(orange) b) P(lemon)
¢) P(true) d) P(false)

. Let Q(x, y) denote the statement “x is the capital of y.”

‘What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

¢) Q(Massachusetts, Boston)
d) QO(New York, New York)

. State the value of x after the statement if P(x) thenx := 1

is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is

a) x=0. b) x=1.

c) x=2.

. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.

. Let N(x) be the statement “x has visited North Dakota,”

where the domain consists of the students in your school.
Express each of these quantifications in English.

a) IxN(x) b) VxN(x) ¢) —3IxN(x)

d) Ax-N(x) e) VaxN(x) f) Vx-N(x)

. Translate these statements into English, where C(x) is “x

is a comedian” and F(x) is “x is funny” and the domain
consists of all people.
a) Vx(C(x) - F(x))
¢) Ax(Ckx) —» F(x))

b) Vx(C(x) A F(x))
d) Ix(Cx) A F(x))

. Translate these statements into English, where R(x) is “x

is a rabbit” and H(x) is “x hops” and the domain consists
of all animals.

a) Vx(R(x) » H(x))
¢) Ix(R(x) - H(x))

b) Vx(R(x) A H(x))
d) Ax(R(x) A H(x))

. Let P(x) be the statement “x can speak Russian” and let

Q(x) be the statement “x knows the computer language
C++.” Express each of these sentences in terms of P(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.
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a) There is a student at your school who can speak Rus-
sian and who knows C++.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

¢) Every student at your school either can speak Russian
or knows C++.

d) No student at your school can speak Russian or knows
C++.

Let C(x) be the statement “x has a cat,” let D(x) be the

statement “x has a dog,” and let F'(x) be the statement “x

has a ferret.” Express each of these statements in terms

of C(x), D(x), F(x), quantifiers, and logical connectives.

Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

¢) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

Let P(x) be the statement “x = x.” If the domain consists

of the integers, what are these truth values?

a) P(0) b) P(1) ©) P(2)

d) P(-1) e) JxP(x) f) VxP(x)

Let Q(x) be the statement “x + 1 > 2x.” If the domain

consists of all integers, what are these truth values?

a) 0(0) b) O(=1) o Q)
d) IxQ(x) €) VxQ(x) £) -0()
g VxQ0(x)

Determine the truth value of each of these statements if
the domain consists of all integers.

a) Vn(n+1>n) b) In(2n = 3n)

¢) dn(n=-n) d) Vn(3n < 4n)

Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) Ixx® =-1) b) Ax(x* < x?)

¢) Vx((—x)> = x?) d) Vx(2x > x)

Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vn(n? > 0) b) In(n? =2)

¢) Vn(n? > n) d) In(n? < 0)

Determine the truth value of each of these statements

if the domain of each variable consists of all real num-
bers.

a) Ix(x2 =2) b) Ix(x2 =-1)

c) Vx(x*+2>1) d) Vx(x? # x)

Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) dxP(x) b) VxP(x)
d) Vx—P(x) e) —dxP(x)

¢) Ax—P(x)
f) —VxP(x)
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Suppose that the domain of the propositional function

P(x) consists of the integers —2, —1, 0, 1, and 2. Write

out each of these propositions using disjunctions, con-

junctions, and negations.

a) JxP(x) b) VxP(x) ¢) Ix~P(x)

d) Vx-P(x) e) —3dxP(x) f) ~VxP(x)

Suppose that the domain of the propositional function

P(x) consists of the integers 1, 2, 3, 4, and 5. Express

these statements without using quantifiers, instead using

only negations, disjunctions, and conjunctions.

a) dxP(x) b) VxP(x)

¢) —IxP(x) d) —VxP(x)

e) Vx((x #3) - P(x)) vV Ix~P(x)

Suppose that the domain of the propositional function

P(x) consists of =5, =3, —1, 1, 3, and 5. Express these

statements without using quantifiers, instead using only

negations, disjunctions, and conjunctions.

a) JxP(x) b) VxP(x)

¢) Vx((x# 1) - P(x))

d) Ix((x > 0) A P(x))

e) Ix(=P(x)) AVx((x < 0) - P(x))

For each of these statements find a domain for which the

statement is true and a domain for which the statement is

false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

¢) Every two people have the same mother.

d) No two different people have the same grandmother.

For each of these statements find a domain for which the

statement is true and a domain for which the statement is

false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

¢) Every two people have the same first name.

d) Someone knows more than two other people.

Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.

¢) There is a person in your class who was not born in
California.

d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.
Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.
a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
¢) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-
tions.
e) Some student in your class does not want to be rich.
Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.
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a) No one is perfect.

b) Not everyone is perfect.

¢) All your friends are perfect.

d) Atleast one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.
b) Everyone in your class has studied calculus and C++.

¢) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

¢) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

¢) Everything is in the correct place and in excellent
condition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

Express each of these statements using logical operators,
predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

¢) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

Suppose the domain of the propositional function P(x, y)
consists of pairs x and y, where xis 1,2,or3 and yis 1, 2,
or 3. Write out these propositions using disjunctions and
conjunctions.
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a) IxP(x, 3) b) VyP(1,y)

¢) P2 y) d) Vx-P(x,2)

Suppose that the domain of Q(x, y, z) consists of triples

x, 9,2z, where x =0,1, or 2, y=0o0r 1, and z=0 or 1.

Write out these propositions using disjunctions and con-

junctions.

a) Vy0(0,y,0) b) Ix0(x, 1, 1)

¢) 3z70(0,0,2) d) Ix=0(x, 0, 1)

Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

¢) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

¢) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

¢) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) Vx(x>1)

b) Vx(x <2)

¢) Ix(x>4)

d) Ix(x<0)

e) Vx(x < —-1)v(x>2)

f) I((x<dHVvix>T)

Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) Vx(—2 <x<3)

b) Vx(0 <x<5)

¢) Ix(-4<x<10

d) Ix(-5<x<-1

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vx(x2 > x)

b) Vx(x>0vx<0)

¢) Vx(x=1)
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Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.
a) Vx(x? #x)

¢) Vx(|x| > 0)

Express each of these statements using predicates and
quantifiers.

b) Vx(x? # 2)

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

¢) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 40-44 deal with the translation between system
specification and logical expressions involving quantifiers.

40.

41.

42.

43.

Translate these system specifications into English, where

the predicate S(x, y) is “x is in state y”” and where the do-

main for x and y consists of all systems and all possible
states, respectively.

a) JxS(x, open)

b) Vx(S(x, malfunctioning) Vv S(x, diagnostic))

¢) 3IxS(x, open) V IxS(x, diagnostic)

d) Ix—S(x, available)

e) Vx—S(x, working)

Translate these specifications into English, where F(p) is

“Printer p is out of service,” B(p) is “Printer p is busy,”

L(j) is “Print job j is lost,” and Q() is “Print job j is

queued.”

a) Ip(F(p) A B(p)) — FjL()

b) VpB(p) — 3j0()

o) 3(Q() ALG)) — IpF(p)

d) (VpB(p) AVjO()) — FIL()

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

¢) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

4.
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b) Whenever there is an active alert, all queued messages
are transmitted.

¢) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.
Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

¢) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and the
proxy server is not in diagnostic mode.

Determine whether Vx(P(x) — Q(x)) and VxP(x) —

VxQ(x) are logically equivalent. Justify your answer.

Determine whether Vx(P(x) < Q(x)) and Vx P(x) <

VxQ(x) are logically equivalent. Justify your answer.

Show that Ix(P(x) vV Q(x)) and IxP(x) V IxQ(x) are log-

ically equivalent.

Exercises 48-51 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

48.

49.
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Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) (VxP(x)) VA = Vx(P(x) Vv A)

b) (IxP(x)) v A = Ix(P(x) vV A)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) (VxP(x)) AA = Vx(P(x) AA)

b) (3xP(x)) AA = 3Ax(P(x) AA)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) Vx(A - P(x)) = A - VxP(x)

b) Ix(A - P(x)) = A —» IxP(x)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) Vx(P(x) - A) = 3xP(x) - A

b) Ax(P(x) — A) = VxP(x) — A

Show that VxP(x) V VxQ(x) and Vx(P(x) V Q(x)) are not
logically equivalent.

Show that IxP(x) A xQ(x) and Ix(P(x) A Q(x)) are not
logically equivalent.

As mentioned in the text, the notation 3!xP(x) denotes
“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) Ilxx>1)

¢) Ix(x+3 =2

b) Ix(x? =1)
d) Ix(x=x+1)
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What are the truth values of these statements?

a) I!xP(x) - IxP(x)

b) VxP(x) — 3!xP(x)

¢) IAx~P(x) - ~VxP(x)

Write out 3!xP(x), where the domain consists of the inte-
gers 1, 2, and 3, in terms of negations, conjunctions, and
disjunctions.

Given the Prolog facts in Example 28, what would Prolog
return given these queries?

a) ?instructor(chan,math273)

b) ?instructor(patel,cs301)

¢) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches(grossman,Y)

Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrolled(kevin,ee222)

b) ?enrolled(kiko,math273)

¢) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F, X), which represent that M is
the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

Suppose that Prolog facts are used to define the pred-
icates mother(M, Y) and father(F, X), which represent
that M is the mother of Y and F is the father of X, re-
spectively. Give a Prolog rule to define the predicate
grandfather(X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 61-64 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

61.

Let P(x), OQ(x), and R(x) be the statements “x is a profes-
sor,” “x isignorant,” and “x is vain,” respectively. Express
each of these statements using quantifiers; logical con-
nectives; and P(x), Q(x), and R(x), where the domain

consists of all people.

Nested Quantifiers

62.

63

64

a) No professors are ignorant.

b) All ignorant people are vain.

¢) No professors are vain.

d) Does (c) follow from (a) and (b)?

Let P(x), O(x), and R(x) be the statements “x is a clear

explanation,” “x is satisfactory,” and “x is an excuse,’

respectively. Suppose that the domain for x consists of
all English text. Express each of these statements us-
ing quantifiers, logical connectives, and P(x), Q(x), and
R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

¢) Some excuses are not clear explanations.

*d) Does (c) follow from (a) and (b)?

. Let P(x), O(x), R(x), and S(x) be the statements “x is a
baby,” “x is logical,” “x is able to manage a crocodile,”
and “xis despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.
b) Nobody is despised who can manage a crocodile.
¢) Illogical persons are despised.
d) Babies cannot manage crocodiles.
*¢) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?
. Let P(x), O(x), R(x), and S(x) be the statements “x is a

2

duck,” “x is one of my poultry,” “x is an officer,” and “x
is willing to waltz,” respectively. Express each of these
statements using quantifiers; logical connectives; and
P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

¢) All my poultry are ducks.

d) My poultry are not officers.

*¢) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5.1 Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can be
used to represent mathematical statements. We also explained how they can be used to translate
English sentences into logical expressions. However, in Section 1.4 we avoided nested quanti-
fiers, where one quantifier is within the scope of another, such as

Vx3Ay(x +y = 0).
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Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements:
Ve>036>0Vx(0<|x —al|<é — [f(x) = L|<e)
=3e>0-36>0Vx(0<|x —a|<é = |f(x) — L|<¢)

=3e>0V6>0 Vx(O<|x —a|<o — [f(x) — L|<e)
=3e>0V6>03x ~(0<|x—a|<é = |[f(x) = L|<e)
=3e>0V6>0 Ix(0<|x —a| <6 Af(x) = L] >¢€).

In the last step we used the equivalence —=(p — ¢) = p A =g, which follows from the fifth
equivalence in Table 7 of Section 1.3.
Because the statement “lim,_ f(x) does not exist’” means for all real numbers L,

lim,_ , f(x) # L, this can be expressed as

VLAe>0V6>03Ix(0 < [x —a| <6 A|f(x) —L| > ¢).

This last statement says that for every real number L there is a real number € > 0 such
that for every real number 6 > 0, there exists a real number x such that 0 < |x —a| < 6 and

[f(x) = L] > e.

Exercises

<

1. Translate these statements into English, where the do-

main for each variable consists of all real numbers.
a) Vxdy(x<y)

b) Va¥y(((x > 0) A (y > 0)) = (xy > 0))

¢) VaVy3dz(xy =z)

. Translate these statements into English, where the do-

main for each variable consists of all real numbers.
a) IxVy(xy =y)

b) VaVy((x 2 0) A (y < 0) = (x—y > 0))

) VaVydz(x=y+2)

. Let O(x, y) be the statement “x has sent an e-mail mes-

sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) IxFy0(x, y)
¢) VxIyO(x,y)
e) VyaxQ(x, y)

b) 3xVyQ(x, y)
d) IyVxQ(x, y)
f) VxVyQ(x, y)

. Let P(x, y) be the statement “Student x has taken class y,”

where the domain for x consists of all students in your
class and for y consists of all computer science courses
at your school. Express each of these quantifications in
English.

a) AxIyP(x, y)
¢) Vx3dyP(x,y)

e) VyaxP(x,y)

b) IxVyP(x, y)
d) IyVxP(x, y)
f) VxVyP(x,y)

5. Let W(x, y) mean that student x has visited website y,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence.

a) W(Sarah Smith, www.att.com)

b) IxW(x, www.imdb.org)

¢) JyW(José Orez, y)

d) Iy(W(Ashok Puri, y) A W(Cindy Yoon, y))

e) JyVz(y # (David Belcher) A (W(David Belcher, z) —
W(y,2)))

£) IxIyVa((x # ) A (W(x, 2) & W, 2))

. Let C(x, y) mean that student x is enrolled in class y,

where the domain for x consists of all students in your
school and the domain for y consists of all classes being
given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) IxC(x, Math 695)

¢) FyC(Carol Sitea, y)

d) Ix(C(x, Math 222) A C(x, CS 252))

) TIVa(xr # 1) A (Cx, 2) = C(, )

f) TV # 1) A (CK 2) < C, )

. Let T(x, y) mean that student x likes cuisine y, where the

domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) —T(Abdallah Hussein, Japanese)
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b) IxT(x, Korean) A VxT(x, Mexican)
¢) Jy(T(Monique Arsenault, y) V
T(Jay Johnson, y))
d) VxvzAy((x #2) = (T(x, ) AT(z, ¥)))
e) xIVy(T(x,y) < T(z y))
£) Vavz3y(T'(x, y) < T(z, y))

. Let O(x, y) be the statement “Student x has been a con-

testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on televi-
sion.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

¢) There is a student at your school who has been a con-
testant on Jeopardy! and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) Atleast two students from your school have been con-
testants on Jeopardy!.

. Let L(x, y) be the statement “x loves y,” where the domain

for both x and y consists of all people in the world. Use
quantifiers to express each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

¢) There is somebody whom everybody loves.

d) Nobody loves everybody.

e) There is somebody whom Lydia does not love.

f) There is somebody whom no one loves.

g) There is exactly one person whom everybody loves.

h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself.

j) There is someone who loves no one besides himself
or herself.

Let F(x, y) be the statement “x can fool y,” where the do-
main consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.

b) Evelyn can fool everybody.

¢) Everybody can fool somebody.

d) There is no one who can fool everybody.

e) Everyone can be fooled by somebody.

f) No one can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

h) There is exactly one person whom everybody can
fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person
besides himself or herself.

Let S(x) be the predicate “x is a student,” F(x) the pred-
icate “x is a faculty member,” and A(x, y) the predicate
“x has asked y a question,” where the domain consists of
all people associated with your school. Use quantifiers to
express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

12.
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¢) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-
tion.

g) There is a faculty member who has asked every other
faculty member a question.

h) Some student has never been asked a question by a
faculty member.

Let I(x) be the statement “x has an Internet connection”
and C(x, y) be the statement “x and y have chatted over
the Internet,” where the domain for the variables x and y
consists of all students in your class. Use quantifiers to
express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with
Chelsea.

¢) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

1) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

0) There are two students in the class who between them
have chatted with everyone else in the class.

Let M(x,y) be “x has sent y an e-mail message” and

T(x, y) be “x has telephoned y,” where the domain con-

sists of all students in your class. Use quantifiers to ex-

press each of these statements. (Assume that all e-mail

messages that were sent are received, which is not the

way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or tele-
phoned Sarah.

¢) Joséhasneverreceived an e-mail message from Deb-
orah.

d) Every student in your class has sent an e-mail mes-
sage to Ken.

e) No one in your class has telephoned Nina.
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f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) There is a student in your class who has sent every-
one else in your class an e-mail message.

h) There is someone in your class who has either sent an
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

Jj) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

1) Every student in the class has either received an e-
mail message or received a telephone call from an-
other student in the class.

m) There are at least two students in your class such that

one student has sent the other e-mail and the second

student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

¢) Some student in this class has visited Alaska but has
not visited Hawaii.

d) Allstudents in this class have learned at least one pro-
gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

b) There is a student in this class who owns a personal
computer.

¢) Every student in this class has taken at least one com-
puter science course.

d) There is a student in this class who has taken at least
one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

16. A discrete mathematics class contains 1 mathematics

17
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major who is a freshman, 12 mathematics majors who
are sophomores, 15 computer science majors who are
sophomores, 2 mathematics majors who are juniors, 2
computer science majors who are juniors, and 1 computer
science major who is a senior. Express each of these state-
ments in terms of quantifiers and then determine its truth
value.

a) There is a student in the class who is a junior.

b) Every student in the class is a computer science ma-
jor.

¢) There is a student in the class who is neither a math-
ematics major nor a junior.

d) Every student in the class is either a sophomore or a
computer science major.

e) There is a major such that there is a student in the
class in every year of study with that major.

Express each of these system specifications using pred-

icates, quantifiers, and logical connectives, if neces-

sary.

a) Every user has access to exactly one mailbox.

b) There is a process that continues to run during all er-
ror conditions only if the kernel is working correctly.

¢) All users on the campus network can access all web-

sites whose url has a .edu extension.

There are exactly two systems that monitor every re-

mote server.

18. Express each of these system specifications using pred-

19
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icates, quantifiers, and logical connectives, if neces-

sary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

¢) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.

Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.

¢) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

Express each of these statements using predicates, quan-

tifiers, logical connectives, and mathematical operators

where the domain consists of all integers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.
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¢) The difference of two negative integers is not neces-
sarily negative.

d) The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these in-
tegers.

Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that ev-
ery positive integer is the sum of the squares of four in-
tegers.

Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that there
is a positive integer that is not the sum of three squares.
Express each of these mathematical statements using
predicates, quantifiers, logical connectives, and mathe-
matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

¢) Every positive real number has exactly two square
roots.

d) A negative real number does not have a square root
that is a real number.

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) Vyx+y=1y)

b) VxVy((x 2 0) A (y <0)) = (x —y > 0))

O II(x<OAGSONAG@—y>0)

d) VxVy(x #0)A(y # 0) © (xy #0))

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) IaVy(xy =y)

b) Vax¥y((x < 0) A (y < 0)) = (xy > 0))

©) IxAy((* > YA (x <))

d) VaVydz(x+y =2z)

Let Q(x, y) be the statement “x +y = x — y.” If the do-
main for both variables consists of all integers, what are
the truth values?

a) 01, 1)

¢) Vy0(1,y)
e) dxIy0(x, y)
g) IyVx0(x, y)
) VaVyO(x, y)
Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vnam(n® < m) b) InVm(n < m?)

¢) Vnam(n +m =0) d) InVm(nm = m)

e) InIm(n> 4+ m?> =5) £) InIm(n® + m? = 6)

g) dndmn+m=4An—-m=1)

h) I3ndmn+m=4An—-—m=2)

i) VaVmIpp = (m+n)/2)

Determine the truth value of each of these statements
if the domain of each variable consists of all real num-
bers.

a) VxIy(? =y)
¢) xVy(xy =0)

b) 0(2,0)

d) Ix0(x, 2)
f) VxIyO(x y)
h) Vy3xQ(x, y)

b) VxIy(x =y?)
d) IxIyx+y#y + x)
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e) Vx(x #0 — Jy(xy = 1))

f) IAVyy#0->xy=1)

g) Vxdy(x+y=1)

h) Ixdy(x+2y=2A2x+4y=5)

i) Vxdyx+y=2A2x—y=1)

J) VaVydz(z = (x+y)/2)

Suppose the domain of the propositional function P(x, y)
consists of pairs x and y, where xis 1,2, or3and yis 1, 2,
or 3. Write out these propositions using disjunctions and
conjunctions.

a) VxVyP(x,y) b) IxIyP(x, y)

¢) AxVyP(x,y) d) Vy3xP(x,y)

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) —~Iy3IxP(x, y)

©) ~I(Q() A Vx-R(x, )
d) ~3Iy(FxR(x, y) V VxS(x, y))

e) —Iy(Vx3zT(x, y, 2) v IxVzU(x, y, 2))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) Vx3yvzT(x,y, z)

b) Vx3IyP(x, y) Vv VxIyO(x, y)

¢) Vx3Ay(P(x, y) A JzR(x, ¥, 2))

d) Vady(P(x, y) = O(x )

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) AVWxT(x, y, 2)

b) IxIyP(x, y) A VxVyO(x, y)

© IO y) < 00, )

d) VyIx3z(T(x, y, 2) vV O, y)

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) VxVyP(x, y)

©) “VYVx(P(x, y) Vv O(x, y))
d) ~(3x3y-P(x, y) A VxVyO(x, y))

e) —Vx(IyVzP(x, y, z) A IZVyP(x, y, 2))

Find a common domain for the variables x, y, and
z for which the statement VxVy((x #y) - Vz((z=x) vV
(z = ))) is true and another domain for which it is false.

b) =Vx3ayP(x, y)

b) —Vy3axP(x, y)

Find a common domain for the variables x,y,z,
and w for which the statement VxVyVzIw((w # x) A
(w # y) A (w # z)) is true and another common domain
for these variables for which it is false.

Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.

b) There is a student in this class who has chatted with
exactly one other student.
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¢) No student in this class has sent e-mail to exactly two
other students in this class.

d) Some student has solved every exercise in this book.

e) No student has solved at least one exercise in every
section of this book.

Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Every student in this class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world ex-
cept Libya.

¢) No one has climbed every mountain in the Himalayas.

d) Every movie actor has either been in a movie with
Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

Express the negations of these propositions using quan-
tifiers, and in English.

a) Every student in this class likes mathematics.

b) There is a student in this class who has never seen a
computer.

¢) There is a student in this class who has taken every
mathematics course offered at this school.

d) There is a student in this class who has been in at least
one room of every building on campus.

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) VaVy(* =y* - x=y)

b) Vx3y(y* =x)

c) VaVy(xy > x)

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vady(x = 1/y)

b) Vx3y(y?> —x < 100)

©) VaVy(x? #y?)

Use quantifiers to express the associative law for multi-

plication of real numbers.

Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
X is nonzero, has exactly one real root.

Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

Determine the truth value of the statement Vx3y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.
b) the nonzero integers.
¢) the positive real numbers.
46. Determine the truth value of the statement IxVy(x < y?)
if the domain for the variables consists of

a) the positive real numbers.
b) the integers.
¢) the nonzero real numbers.

47. Show that the two statements —3IxVyP(x,y) and
Vx3y—-P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quantifiers
over the second variable in P(x, y) have the same domain,
are logically equivalent.

*48. Show that VxP(x) vV VxQ(x) and VxVy(P(x)V O®)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

*49, a) Show that VxP(x) A 3xQ(x) is logically equivalent to
Vx3dy (P(x) A Q(y)), where all quantifiers have the
same nonempty domain.

b) Show that VxP(x)V IxQ(x) is equivalent to Vx3Jy
(P(x) v Q(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if
it is of the form
Q1% 0% - Qpx P(xy, X, o, Xp),
where each Q;,i = 1,2, ..., k, is either the existential quanti-
fier or the universal quantifier, and P(x,, ..., x;) is a predicate
involving no quantifiers. For example, IxVy(P(x, y) A O(y)) is
in prenex normal form, whereas 3xP(x) V VxQ(x) is not (be-
cause the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quanti-
fiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

*50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 47 and 48 in Section 1.4, and Exercises 48
and 49.]

a) IxP(x) v Ix0O(x) v A, where A is a proposition not in-

volving any quantifiers

b) —(VxP(x) Vv VxQO(x))

¢) dxP(x) —» IxQO(x)

*%5]1. Show how to transform an arbitrary statement to a state-

ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

*52. Express the quantification 3!'xP(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.
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The verification of universal modus tollens is left as Exercise 25. Exercises 26-29 develop
additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

.. Socrates is mortal.

2. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

.. George has eight legs.

3. What rule of inference is used in each of these argu-

ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther a mathematics major or a computer science ma-
jor.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

c¢) If it is rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) IfIgoswimming, then I will stay in the sun too long.
If Istay in the sun too long, then I will sunburn. There-
fore, if I go swimming, then I will sunburn.

4. What rule of inference is used in each of these argu-

ments?

a) Kangaroos live in Australia and are marsupials.
Therefore, kangaroos are marsupials.

b) It is either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

¢) Linda is an excellent swimmer. If Linda is an ex-
cellent swimmer, then she can work as a lifeguard.
Therefore, Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then I can an-
swer all the exercises. If I answer all the exercises, 1
will understand the material. Therefore, if I work all
night on this homework, then I will understand the
material.

10.

. Use rules of inference to show that the hypotheses

“Randy works hard,” “If Randy works hard, then he is
a dull boy,” and “If Randy is a dull boy, then he will not
get the job” imply the conclusion “Randy will not get the
job.”

. Use rules of inference to show that the hypotheses “If it

does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

. What rules of inference are used in this famous argu-

ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

. What rules of inference are used in this argument? “No

man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

. For each of these collections of premises, what relevant

conclusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “IfItake the day off, it either rains or snows.” “I took
Tuesday off or I took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I
have strange dreams if there is thunder while I sleep.”
“I did not have strange dreams.”

¢) “T am either clever or lucky.” “I am not lucky.” “If I
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “Whatis good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”

For each of these sets of premises, what relevant conclu-
sion or conclusions can be drawn? Explain the rules of in-
ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I
use the whirlpool if I am sore.” “I did not use the
whirlpool.”

b) “If I work, it is either sunny or partly sunny.” “I
worked last Monday or I worked last Friday.” “It was
not sunny on Tuesday.” “It was not partly sunny on
Friday.”

¢) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”
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d) “Every student has an Internet account.” “Homer
does not have an Internet account.” “Maggie has an
Internet account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.”” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If I am hallucinating, I see elephants run-
ning down the road.”

Show that the argument form with premises p,, p,, ..., p,

and conclusion g — r is valid if the argument form with

premises py, p,, ..., P, g, and conclusion r is valid.

Show that the argument form with premises (p At) —
(rvs),q— (uAt),u — p,and —s and conclusion g — r
is valid by first using Exercise 11 and then using rules of
inference from Table 1.

For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to
write programs in JAVA can get a high-paying job.
Therefore, someone in this class can get a high-paying
job.”

“Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

¢) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

“Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

For each of these arguments, explain which rules of in-
ference are used for each step.

b)

d)

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

“Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in al-
gorithms next year.”

¢) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal min-
ers. Therefore, there is a wonderful movie about coal
miners.”

“There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

b)

d
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ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

¢) All parrots like fruit. My pet bird is not a parrot.
Therefore, my pet bird does not like fruit.

Everyone who eats granola every day is healthy.
Linda is not healthy. Therefore, Linda does not eat
granola every day.

b)

d)

For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

b)

¢) Quincy likes all action movies. Quincy likes the
movie Eight Men Out. Therefore, Eight Men Out is
an action movie.

d) Alllobstermen set at least a dozen traps. Hamilton is a

lobsterman. Therefore, Hamilton sets at least a dozen

traps.

What is wrong with this argument? Let H(x) be “x is

happy.” Given the premise JxH(x), we conclude that

H(Lola). Therefore, Lola is happy.

What is wrong with this argument? Let S(x, y) be “x is
shorter than y.” Given the premise 3sS(s, Max), it fol-
lows that S(Max, Max). Then by existential generaliza-
tion it follows that IxS(x, x), so that someone is shorter
than himself.

Determine whether each of these arguments is valid. If an
argument is correct, what rule of inference is being used?
If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n? > 1.
Suppose that n> > 1. Thenn > 1.

b) If n is a real number with n >3, then n? > 9.
Suppose that n> < 9. Then n < 3.

¢) If n is a real number with n > 2, then n? > 4.
Suppose that n < 2. Then n” < 4.

Determine whether these are valid arguments.

a) Ifxis apositive real number, then x? is a positive real
number. Therefore, if a? is positive, where a is a real
number, then a is a positive real number.

b) If x? # 0, where x is a real number, then x # 0. Let a
be a real number with a? # 0; then a # 0.

Which rules of inference are used to establish the

conclusion of Lewis Carroll’s argument described in

Example 26 of Section 1.4?

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?
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Identify the error or errors in this argument that sup-
posedly shows that if JxP(x) A IxQ(x) is true then
Ix(P(x) A Q(x)) is true.

1. IxP(x) v 3xQ(x) Premise

2. AxP(x) Simplification from (1)

3. P(c) Existential instantiation from (2)
4. 3xQ(x) Simplification from (1)

5. Q(c) Existential instantiation from (4)
6. P(c) A Q(c) Conjunction from (3) and (5)

7. Ax(P(x) A Q(x)) Existential generalization

Identify the error or errors in this argument that sup-
posedly shows that if Vx(P(x)V Q(x)) is true then
VxP(x) V VxQ(x) is true.

1. Vx(P(x) v O(x)) Premise

2. P(c) v Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)

4. VxP(x) Universal generalization from (3)
5. Qo) Simplification from (2)

6. VxQ(x) Universal generalization from (5)
7. Vx(P(x) V YxQ(x)) Conjunction from (4) and (6)

Justify the rule of universal modus tollens by showing
that the premises Vx(P(x) — Q(x)) and —~Q(a) for a par-
ticular element a in the domain, imply =P(a).

Justify the rule of universal transitivity, which states
that if Vx(P(x) - Q(x)) and Vx(Q(x) = R(x)) are true,
then Vx(P(x) - R(x)) is true, where the domains of all
quantifiers are the same.

Use rules of inference to show that if Vx(P(x) — (Q(x) A
S(x))) and Vx(P(x) A R(x)) are true, then Vx(R(x) A S(x))
is true.

Use rules of inference to show that if Vx(P(x) vV Q(x)) and
Vx((=P(x) A Q(x)) = R(x)) are true, then Vx(—R(x) —
P(x)) is also true, where the domains of all quantifiers
are the same.

Use rules of inference to show that if Vx(P(x) V Q(x)),
Vx(=0(x) V S(x)), Vx(R(x) = =S(x)), and Ix-P(x) are
true, then Ax—R(x) is true.

Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
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31.

32.

33.

*34.

*35.

David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

Show that the equivalence p A =p = F can be derived us-
ing resolution together with the fact that a conditional
statement with a false hypothesis is true. [Hint: Let g =
r = F in resolution. ]

Use resolution to show that the compound proposition
@PVPAEPVPAPYg) A(mpV ) is not satisfi-
able.
The Logic Problem, taken from WFF’N PROOF, The
Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, de-
termine whether each of the following are valid conclu-
sions of these assumptions:
a) That mathematics is not easy, if many students like
logic.
b) That not many students like logic, if mathematics is
not easy.
¢) That mathematics is not easy or logic is difficult.
d) That logic is not difficult or mathematics is not easy.
e) Thatif not many students like logic, then either math-
ematics is not easy or logic is not difficult.
Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.
If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to pre-
vent evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

1.7.1 Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven
theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
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Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

1.7.9 Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form Vx(P(x) —
QO(x)), including direct proofs and proofs by contraposition. There are many theorems of this type
whose proofs are easy to construct by directly working through the hypotheses and definitions
of the terms of the theorem. However, it is often difficult to prove a theorem without resorting
to a clever use of a proof by contraposition or a proof by contradiction, or some other proof
technique. In Section 1.8 we will address proof strategy. We will describe various approaches
that can be used to find proofs when straightforward approaches do not work. Constructing
proofs is an art that can be learned only through experience, including writing proofs, having

your proofs critiqued, and reading and analyzing other proofs.

Exercises
1. Use a direct proof to show that the sum of two odd inte- 14. Prove that if x is rational and x # 0, then 1/x is rational.
gers is even. 15. Prove that if x is an irrational number and x > 0, then \/;

10.

11.

12.

13.

. Use a direct proof to show that the sum of two even inte-

gers is even.

. Show that the square of an even number is an even num-

ber using a direct proof.

. Show that the additive inverse, or negative, of an even

number is an even number using a direct proof.

. Prove that if m +n and n + p are even integers, where

m, n, and p are integers, then m + p is even. What kind of
proof did you use?

. Use a direct proof to show that the product of two odd

numbers is odd.

. Use a direct proof to show that every odd integer is the

difference of two squares. [Hint: Find the difference of
the squares of k + 1 and k where k is a positive integer.]

. Prove that if n is a perfect square, then n + 2 is not a per-

fect square.

. Use a proof by contradiction to prove that the sum of an

irrational number and a rational number is irrational.

Use a direct proof to show that the product of two rational
numbers is rational.

Prove or disprove that the product of two irrational num-
bers is irrational.

Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

Prove that if x is irrational, then 1/x is irrational.

16.
17.
L5718,

19.

20.

21.

22,

23.

24,

is also irrational.

Prove that if x, y, and z are integers and x + y + z is odd,
then at least one of x, y, and z is odd.

Use a proof by contraposition to show that if x +y > 2,
where x and y are real numbers, then x > 1 ory > 1.
Prove that if m and n are integers and mn is even, then m
is even or n is even.

Show that if n is an integer and n3 + 5 is odd, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove that if n is an integer and 3n + 2 is even, then 7 is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove the proposition P(0), where P(n) is the proposition
“If n is a positive integer greater than 1, then n> > n.”
What kind of proof did you use?

Prove the proposition P(1), where P(n) is the proposi-
tion “If  is a positive integer, then n> > n.” What kind of
proof did you use?

Let P(n) be the proposition “If @ and b are positive real
numbers, then (a + b)" > a" + b".” Prove that P(1) is
true. What kind of proof did you use?

Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either a
pair of blue socks or a pair of black socks.
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Show that at least ten of any 64 days chosen must fall on
the same day of the week.

Show that at least three of any 25 days chosen must fall
in the same month of the year.

Use a proof by contradiction to show that there is no ra-
tional number r for which r* + r + 1 = 0. [Hint: Assume
that » = a/b is a root, where a and b are integers and a/b
is in lowest terms. Obtain an equation involving integers
by multiplying by 4. Then look at whether a and b are
each odd or even.]

Prove that if n is a positive integer, then n is even if and
only if 7n + 4 is even.

Prove that if n is a positive integer, then 7 is odd if and
only if 5n + 6 is odd.

Prove that m? = n? if and only if m = n or m = —n.
Prove or disprove that if m and n are integers such that
mn = 1, theneitherm = 1andn = 1, orelsem = —1 and
n=-1.

Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b.

Show that these statements about the integer x are
equivalent: (i) 3x +2 is even, (ii) x + 5 is odd, (iii) x*
is even.

Show that these statements about the real number x are
equivalent: (7) x is rational, (if) x/2 is rational, (iii) 3x — 1
is rational.

Show that these statements about the real number x are
equivalent: (i) x is irrational, (if) 3x+ 2 is irrational,
(iii) x/2 is irrational.

Is this reasoning for finding the solutions of the equa-
tion V2x2 — 1 = x correct? (1) V/2x2 — 1 = x is given;

(2) 2x? — 1 = x?, obtained by squaring both sides of (1);

Proof Methods and Strategy

37.

38.

39.

40.

41.

42,

43.

4.

(3) x> —1 =0, obtained by subtracting x> from both
sides of (2); (4) (x — 1)(x+ 1) = 0, obtained by factor-
ing the left-hand side of x> —1; (5) x=1 or x = —1,
which follows because ab =0 implies that a =0 or
b=0.

Are these steps for finding the solutions of v/x+3 =
3 —x correct? (1) Vx+3=3—xis given; 2) x+3 =
x> — 6x + 9, obtained by squaring both sides of (1); (3)
0 = x?> — 7x + 6, obtained by subtracting x + 3 from both
sides of (2); (4) 0 = (x — 1)(x — 6), obtained by factoring
the right-hand side of (3); (5) x = 1 or x = 6, which fol-
lows from (4) because ab = 0 implies thata = Oorb = 0.
Show that the propositions py, p,, p3, and p, can be shown
to be equivalent by showing that p, < p,, p, <> p;, and
Py < P3-

Show that the propositions p;, p,, P3, P4, and ps can
be shown to be equivalent by proving that the condi-
tional statements p; — py, p3 = Py, P4 = P2, P2 = Ds»
and ps — p; are true.

Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of
three integers.

Prove that at least one of the real numbers a,, a,, ..., a,
is greater than or equal to the average of these numbers.
What kind of proof did you use?

Use Exercise 41 to show that if the first 10 positive inte-
gers are placed around a circle, in any order, there exist
three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (ii) n+ 1 is odd, (iii) 3n+ 1 is
odd, (iv) 3n is even.

Prove that these four statements about the integer n are
equivalent: (i) n? is odd, (ii) 1 — n is even, (iii) n’ is odd,
(iv) n* + 1 is even.

1.8.1 Introduction

Assessment )

In Section 1.7 we introduced many methods of proof and illustrated how each method can
be used. In this section we continue this effort. We will introduce several other commonly

used proof methods, including the method of proving a theorem by considering different cases
separately. We will also discuss proofs where we prove the existence of objects with desired

properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof meth-
ods, we will study some aspects of the art and science of proofs. We will provide advice on how
to find a proof of a theorem. We will describe some tricks of the trade, including how proofs
can be found by working backward and by adapting existing proofs.



Build up your arsenal of
proof methods as you
work through this book.

1.8 Proof Methods and Strategy 113

4.3, where these open questions are discussed.) You will encounter many other open questions
as you read this book. The study of such problems has played and continues to play an important
role in the development of many parts of discrete mathematics.

1.8.10 Additional Proof Methods

In this chapter we introduced the basic methods used in proofs. We also described how to lever-
age these methods to prove a variety of results. We will use these proof methods in all subse-
quent chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about
sets, functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in
graph theory. Among the theorems we will prove is the famous halting theorem, which states
that there is a problem that cannot be solved using any procedure. However, there are many im-
portant proof methods besides those we have covered. We will introduce some of these methods
later in this book. In particular, in Section 5.1 we will discuss mathematical induction, which
is an extremely useful method for proving statements of the form VnP(n), where the domain
consists of all positive integers. In Section 5.3 we will introduce structural induction, which can
be used to prove results about recursively defined sets. We will use the Cantor diagonalization
method, which can be used to prove results about the size of infinite sets, in Section 2.5. In
Chapter 6 we will introduce the notion of combinatorial proofs, which can be used to prove re-
sults by counting arguments. The reader should note that entire books have been devoted to the
activities discussed in this section, including many excellent works by George Pdlya ([Po61],
[Po71], [P090]).

Finally, note that we have not given a procedure that can be used for proving theorems in
mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

Exercises
1. Prove that n> 4+ 1 > 2" when n is a positive integer with 9. Prove the triangle inequality, which states that if x and y
1<n<4 are real numbers, then |x| + |y| > |x + y| (Where |x| rep-

2. Use a proof by cases to show that 10 is not the square of a
positive integer. [Hint: Consider two cases: (i) | <x < 3,

(i) x > 4]

3. Use a proof by cases to show that 100 is not the cube of a

resents the absolute value of x, which equals x if x > 0
and equals —x if x < 0).

10. Prove that there is a positive integer that equals the sum
of the positive integers not exceeding it. Is your proof
constructive or nonconstructive?

p951t1ve integer. [Hint: Consider two cases: () 1 <x <4, 11. Prove that there are 100 consecutive positive integers that

(i)x25] are not perfect squares. Is your proof constructive or non-
4. Prove that there are no positive perfect cubes less than constructive?

1000 that are the sum of the cubes of two positive 12. Prove that either 2 - 105 + 15 or 2 - 10°%° + 16 is not a

integers.

perfect square. Is your proof constructive or nonconstruc-
tive?

. Prove that if x and y are real numbers, then max(x, y) +
min(x, y) = x +y. [Hint: Use a proof by cases, with the
two cases corresponding to x >y and x <y, respec-
tively.]

. Use a proof by cases to show that min(a, min(b, ¢)) =
min(min(a, b), ¢) whenever a, b, and ¢ are real numbers.

. Prove using the notion of without loss of generality that
min(x, y) = (x+y — |[x — y|)/2 and max(x, y) = (x +y +
[x = y|)/2 whenever x and y are real numbers.

. Prove using the notion of without loss of generality that

5x + 5y is an odd integer when x and y are integers of
opposite parity.

13.

14.

15.

16.

Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

Show that the product of two of the numbers 65'°00 —
2001 4 3177 791212 _ 92399 | 22001 ap( 944493 _ 58192 4
7'777 is nonnegative. Is your proof constructive or non-
constructive? [Hint: Do not try to evaluate these num-
bers!]

Prove or disprove that there is a rational number x and an
irrational number y such that x” is irrational.

Prove or disprove that if @ and b are rational numbers,
then a” is also rational.
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17. Show that each of these statements can be used to ex-

18

19.

20.

21

22

23

24

25

26

*27

*28

29

30

31

press the fact that there is a unique element x such that
P(x) is true. [Note that we can also write this statement
as 3!xP(x).]

a) Vy(P(y) © x=1y)

b) IxP(x) AVXVY(P(X) AP(y) > x =)

©) Ix(P(x) AVY(P(y) = x =)

Show that if a, b, and c¢ are real numbers and a # 0, then
there is a unique solution of the equation ax + b = c.

Suppose that a and b are odd integers with a # b. Show
there is a unique integer ¢ such that |a — c| = |b — ¢|.

Show that if r is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k — 2 and k + 3.

Prove that given a real number x there exist unique num-
bers n and e such that x =n+e¢€, n is an integer, and
0<e<l.

Prove that given a real number x there exist unique num-
bers n and € such that x =n — e, n is an integer, and
0<ex<1.

Use forward reasoning to show that if x is a nonzero
real number, then x> + 1 /x> > 2. [Hint: Start with the in-
equality (x — 1/x)? > 0, which holds for all nonzero real
numbers x.]

The harmonic mean of two real numbers x and y equals
2xy/(x + y). By computing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

The quadratic mean of two real numbers x and y
equals \/(x* + y?)/2. By computing the arithmetic and
quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

Write the numbers 1,2, ..., 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write |j — k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

Suppose that five ones and four zeros are arranged around
acircle. Between any two equal bits you insert a 0 and be-
tween any two unequal bits you insert a 1 to produce nine
new bits. Then you erase the nine original bits. Show that
when you iterate this procedure, you can never get nine
zeros. [Hint: Work backward, assuming that you did end
up with nine zeros.]

Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.
Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

Prove that there is no positive integer n such that n* +
n® = 100.

32.

33.

34.

35

36.
37.

38.

*39

40

41

42

43

44

45

46.

47.

Prove that there are no solutions in integers x and y to the
equation 2x? + 5y% = 14.

Prove that there are no solutions in positive integers x and
y to the equation x* + y* = 625.

Prove that there are infinitely many solutions in pos-
itive integers x, y, and z to the equation x>+ =
2. [Hint: Let x = m? — n?, y=2mn, and 7 = m? + n?,
where m and n are integers.]

Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where a, b, and ¢ are positive integers, then

a<y/nb<y/nore</n

Prove that v/2 is irrational.

Prove that between every two rational numbers there is
an irrational number.

Prove that between every rational number and every irra-

tional number there is an irrational number.

LetS = x;y; + x5, + --- +x,y,, where x, x,, ..., x,, and

Y Yo ..., Y, are orderings of two different sequences of

positive real numbers, each containing n elements.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all or-
derings of the two sequences when one sequence
is sorted into nondecreasing order and the other is
sorted into nonincreasing order.

Prove or disprove that if you have an 8-gallon jug of wa-

ter and two empty jugs with capacities of 5 gallons and 3

gallons, respectively, then you can measure 4 gallons by

successively pouring some of or all of the water in a jug
into another jug.

Verify the 3x 4+ 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21
Verify the 3x 4+ 1 conjecture for these integers.
a) 16 b) 11 ¢) 35 d) 113

Prove or disprove that you can use dominoes to tile
the standard checkerboard with two adjacent corners re-
moved (that is, corners that are not opposite).

Prove or disprove that you can use dominoes to tile a stan-
dard checkerboard with all four corners removed.

Prove that you can use dominoes to tile a rectangular
checkerboard with an even number of squares.

Prove or disprove that you can use dominoes to tile a
5 % 5 checkerboard with three corners removed.

Use a proof by exhaustion to show that a tiling using
dominoes of a 4 X 4 checkerboard with opposite corners
removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original
checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square
2 is covered either by a domino laid horizontally, which



covers squares 2 and 3, or vertically, which covers squares
2 and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

*48. Prove that when a white square and a black square are
removed from an 8 X 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the par-
tition of the remaining cells formed by inserting the bar-
riers shown in the figure can be covered by dominoes.]
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49. Show that by removing two white squares and two black
squares from an 8 X 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.

*50. Find all squares, if they exist, on an 8 X 8 checkerboard
such that the board obtained by removing one of these
squares can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]

*51. a) Draw each of the five different tetrominoes, where a
tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or
disprove that you can tile a standard checkerboard us-
ing these tetrominoes.

*52. Prove or disprove that you can tile a 10 x 10 checker-
board using straight tetrominoes.

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

— p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combin-
ing propositions using logical operators

truth table: a table displaying all possible truth values of
propositions

p V q (disjunction of p and ¢): the proposition “p or ¢,” which
is true if and only if at least one of p and ¢ is true

P A g (conjunction of p and g): the proposition “p and g,”
which is true if and only if both p and ¢ are true

P @ q (exclusive or of p and g): the proposition “p XOR g,”
which is true when exactly one of p and q is true

p — q (p implies g): the proposition “if p, then g,” which is
false if and only if p is true and ¢ is false

converse of p — g: the conditional statement g — p

contrapositive of p — ¢: the conditional statement g — —p

inverse of p — g: the conditional statement =p — —g

p < q (biconditional): the proposition “p if and only if g,”
which is true if and only if p and g have the same truth
value

bit: eitheraOora 1l

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits
bit string: a list of bits

bitwise operations: operations on bit strings that operate on
each bit in one string and the corresponding bit in the other
string

logic gate: a logic element that performs a logical operation
on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that
produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true
and sometimes false

consistent compound propositions: compound propositions
for which there is an assignment of truth values to the vari-
ables that makes all these propositions true

satisfiable compound proposition: a compound proposition
for which there is an assignment of truth values to its vari-
ables that makes it true

logically equivalent compound propositions: compound
propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the
subject

propositional function: a statement containing one or more
variables that becomes a proposition when each of its vari-
ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a
propositional function may take
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dx P(x) (existential quantification of P(x)): the proposition
that is true if and only if there exists an x in the domain
such that P(x) is true

VxP(x) (universal quantification of P(x)): the proposition
that is true if and only if P(x) is true for every x in the do-
main

logically equivalent expressions: expressions that have the
same truth value no matter which propositional functions
and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-
tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions in-
volving propositional variables

premise: a statement, in an argument, or argument form, other
than the final one

conclusion: the final statement in an argument or argument
form

valid argument form: a sequence of compound propositions
involving propositional variables where the truth of all the
premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in
the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a
rule of inference (or sometimes, more generally, an incor-
rect argument)

circular reasoning or begging the question: reasoning where
one or more steps are based on the truth of the statement
being proved

theorem: a mathematical assertion that can be shown to be
true

conjecture: a mathematical assertion proposed to be true, but
that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be
used as a basis for proving theorems

Review Questions

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence
of a theorem that has just been proved

vacuous proof: a proof that p — ¢ is true based on the fact
that p is false

trivial proof: a proof that p — ¢ is true based on the fact that
q is true

direct proof: a proof that p — ¢ is true that proceeds by show-
ing that ¢ must be true when p is true

proof by contraposition: a proof that p — ¢ is true that pro-
ceeds by showing that p must be false when g is false

proof by contradiction: a proof that p is true based on the
truth of the conditional statement -p — ¢, where ¢ is a con-
tradiction

exhaustive proof: a proof that establishes a result by checking
a list of all possible cases

proof by cases: a proof broken into separate cases, where these
cases cover all possibilities

without loss of generality: an assumption in a proof that
makes it possible to prove a theorem by reducing the num-
ber of cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a
specified property exists that explicitly finds such an ele-
ment

nonconstructive existence proof: a proof that an element with
a specified property exists that does not explicitly find such
an element

rational number: a number that can be expressed as the ratio
of two integers p and ¢ such that ¢ # 0

uniqueness proof: a proof that there is exactly one element
satisfying a specified property

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-
tion 1.3.

De Morgan’s laws for quantifiers.
Rules of inference for propositional calculus.
Rules of inference for quantified statements.

1. a) Define the negation of a proposition.

b) What is the negation of “This is a boring course”?

2. a) Define (using truth tables) the disjunction, conjunc-
tion, exclusive or, conditional, and biconditional of
the propositions p and g.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “T"11
go to the movies tonight” and “I’ll finish my discrete
mathematics homework™?

3. a) Describe at least five different ways to write the con-
ditional statement p — ¢ in English.

b) Define the converse and contrapositive of a condi-
tional statement.

¢) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

4. a) What does it mean for two propositions to be logically
equivalent?
b) Describe the different ways to show that two com-
pound propositions are logically equivalent.
¢) Show in at least two different ways that the com-
pound propositions =p V (r = =g) and =p V ~g V —r
are equivalent.
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10.

(Depends on the Exercise Set in Section 1.3)

a) Given atruth table, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators A, V,
and — are functionally complete.

¢) Is there an operator such that the set containing just
this operator is functionally complete?

What are the universal and existential quantifications of

a predicate P(x)? What are their negations?

a) What is the difference between the quantification
AxVyP(x, y) and Vy3xP(x, y), where P(x, y) is a predi-
cate?

b) Give an example of a predicate P(x, y) such that
IxVyP(x,y) and Vy3xP(x,y) have different truth
values.

Describe what is meant by a valid argument in proposi-

tional logic and show that the argument “If the earth is

flat, then you can sail off the edge of the earth,” “You can-
not sail off the edge of the earth,” therefore, “The earth is
not flat” is a valid argument.

Use rules of inference to show that if the premises “All

zebras have stripes” and “Mark is a zebra” are true, then

the conclusion “Mark has stripes” is true.

a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p — g.

Supplementary Exercises
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b) Give a direct proof, a proof by contraposition, and a
proof by contradiction of the statement: “If n is even,
then n + 4 is even.”

11. a) Describe a way to prove the biconditional p < q.

b) Prove the statement: “The integer 3n + 2 is odd if
and only if the integer 9n + 5 is even, where 7 is an
integer.”

12

To prove that the statements p, p,, p3, and p, are equiva-
lent, is it sufficient to show that the conditional statements
P4 = P2, D3 — Py and p; — p, are valid? If not, provide
another collection of conditional statements that can be
used to show that the four statements are equivalent.

13. a) Suppose that a statement of the form VxP(x) is false.
How can this be proved?

b) Show that the statement “For every positive integer n,
n* > 2n” is false.

14. What is the difference between a constructive and non-

constructive existence proof? Give an example of each.

15. What are the elements of a proof that there is a unique
element x such that P(x), where P(x) is a propositional
function?

16. Explain how a proof by cases can be used to prove a result
about absolute values, such as the fact that |xy| = |x||y]|
for all real numbers x and y.

1.

»

Let p be the proposition “I will do every exercise in
this book™ and ¢ be the proposition “I will get an A in
this course.” Express each of these as a combination of
pand g.

a) [will get an A in this course only if [ do every exercise
in this book.

b) I will get an A in this course and I will do every exer-
cise in this book.

¢) Either I will not get an A in this course or I will not
do every exercise in this book.

d) For me to get an A in this course it is necessary and
sufficient that I do every exercise in this book.

Find the truth table of the compound proposition (p V

q) = (P AT,

Show that these compound propositions are tautologies.

a) (gAp = q9)—p

b) (PV @) A=p)—q

Give the converse, the contrapositive, and the inverse of

these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x| = x, then x > 0.

¢) If nis greater than 3, then n? is greater than 9.

Given a conditional statement p — ¢, find the converse of

its inverse, the converse of its converse, and the converse

of its contrapositive.

6. Given a conditional statement p — ¢, find the inverse of
its inverse, the inverse of its converse, and the inverse of
its contrapositive.

N

Find a compound proposition involving the propositional
variables p, g, r, and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

8. Show that these statements are inconsistent: “If Sergei
takes the job offer, then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

9. Show that these statements are inconsistent: “If Miranda
does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime
propositional logic ability of a student via a technique known
as an obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
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added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10.

11.

12.

Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p — ¢, then the
proposition =(p V r) V ¢, and finally, the proposition g.
For which of the eight possible sequences of three an-
swers will the student pass the test?

Suppose that in a four-round obligato game, the teacher
first gives the student the proposition =(p — (g A r)), then
the proposition p V =g, then the proposition =, and fi-
nally, the proposition (p A r) V (¢ — p). For which of the
16 possible sequences of four answers will the student
pass the test?

Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13.

14.

15.

16.

17.

18.

Suppose that you meet three people, Aaron, Bohan, and
Crystal. Can you determine what Aaron, Bohan, and
Crystal are if Aaron says “All of us are knaves” and Bohan
says “Exactly one of us is a knave”?

Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita
says “I am a knave and Boris is a knight” and Boris says
“Exactly one of the three of us is a knight”?

(Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part of
the investigation of a crime. The detectives knew that one
of the three committed the crime, but not which one. They
also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

Show that if S is a proposition, where S is the condi-
tional statement “If S is true, then unicorns live,” then
“Unicorns live” is true. Show that it follows that S can-
not be a proposition. (This paradox is known as Lob’s
paradox.)

Show that the argument with premises “The tooth fairy
is a real person” and “The tooth fairy is not a real per-
son” and conclusion “You can find gold at the end of the
rainbow” is a valid argument. Does this show that the
conclusion is true?

Suppose that the truth value of the proposition p; is T
whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values

100 100
of V.o, @; Apip) and A2 (0; V piyy)-

*19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

Model 16 x 16 Sudoku puzzles (with 4 X 4 blocks) as
satisfiability problems.

Let P(x) be the statement “Student x knows calculus” and

let O(y) be the statement “Class y contains a student who

knows calculus.” Express each of these as quantifications

of P(x) and Q().

a) Some students know calculus.

b) Not every student knows calculus.

¢) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

Let P(m, n) be the statement “m divides n,” where the do-
main for both variables consists of all positive integers.
(By “m divides n”” we mean that n = km for some integer
k.) Determine the truth values of each of these statements.

a) P4,5) b) P(2,4)
¢) VmVn P(m, n) d) ImVn P(m, n)
e) dnVm P(m, n) f) VnP(1,n)

Find a domain for the quantifiers in IxIy(x #y A
Vz((z = x) V (z = ¥))) such that this statement is true.
Find a domain for the quantifiers in IxIy(x #y A
Vz((z=x)V(z=y))) such that this statement is
false.

Use existential and universal quantifiers to express the
statement “No one has more than three grandmothers”
using the propositional function G(x, y), which represents
“x is the grandmother of y.”

Use existential and universal quantifiers to express the
statement “Everyone has exactly two biological parents”
using the propositional function P(x, y), which represents
“x is the biological parent of y.”

The quantifier 3, denotes “there exists exactly n,” so that
3,xP(x) means there exist exactly n values in the domain
such that P(x) is true. Determine the true value of these
statements where the domain consists of all real num-
bers.

a) Jpx(x* =-1) b) 3,x(|x| =0)

©) Ix(x* =2) d) F3x(x = |x])

Express each of these statements using existential and
universal quantifiers and propositional logic, where 3, is
defined in Exercise 26.

a) JyxP(x) b) 3,xP(x)

¢) F,xP(x) d) 3;xP(x)

Let P(x,y) be a propositional function. Show that
AxVy P(x, y) — Vy3x P(x, y) is a tautology.

Let P(x) and Q(x) be propositional functions. Show that
Ix (P(x) —» Q(x)) and Vx P(x) — Jx Q(x) always have the
same truth value.

If Vy3xP(x, y) is true, does it necessarily follow that
Ax Vy P(x, y) is true?

If Vx3yP(x,y) is true, does it necessarily follow that
dx Vy P(x, y) is true?



32. Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical
induction.

¢) Some students in this class do not like discrete math-
ematics.

d) Inevery mathematics class there is some student who
falls asleep during lectures.

Express this statement using quantifiers: “Every student

in this class has taken some course in every department

in the school of mathematical sciences.”

33

34

Express this statement using quantifiers: “There is a
building on the campus of some college in the United
States in which every room is painted white.”

Express the statement “There is exactly one student in
this class who has taken exactly one mathematics class
at this school” using the uniqueness quantifier. Then ex-
press this statement using quantifiers, without using the
uniqueness quantifier.

35

36. Describe a rule of inference that can be used to prove that
there are exactly two elements x and y in a domain such
that P(x) and P(y) are true. Express this rule of inference

as a statement in English.

37. Use rules of inference to show that if the premises

Vx(P(x) —» O(x)), Vx(Q(x) = R(x)), and —R(a), where a

Computer Projects
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is in the domain, are true, then the conclusion —P(a) is
true.

Prove that if x° is irrational, then x is irrational.

Prove or disprove that if x2 is irrational, then X3 is irra-
tional.

Prove that given a nonnegative integer n, there is a unique
nonnegative integer /m such that m> < n < (m + 1)2.

Prove that there exists an integer m such that m? > 101000,
Is your proof constructive or nonconstructive?

Prove that there is a positive integer that can be written
as the sum of squares of positive integers in two differ-
ent ways. (Use a computer or calculator to speed up your
work.)

Disprove the statement that every positive integer is the
sum of the cubes of eight nonnegative integers.

Disprove the statement that every positive integer is the
sum of at most two squares and a cube of nonnegative
integers.

Disprove the statement that every positive integer is the
sum of 36 fifth powers of nonnegative integers.

Assuming the truth of the theorem that states that \/ﬁ is
irrational whenever n is a positive integer that is not a

perfect square, prove that \/5 + \/5 is irrational.

Write programs with the specified input and output.

1. Given the truth values of the propositions p and ¢, find the
truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

2. Given two bit strings of length n, find the bitwise AND,
bitwise OR, and bitwise XOR of these strings.

*3. Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

Computations and Explorations

4. Given the truth values of the propositions p and ¢ in

fuzzy logic, find the truth value of the disjunction and
the conjunction of p and g (see Exercises 50 and 51 of
Section 1.1).

*5, Given positive integers m and n, interactively play the

game of Chomp.

*6. Given a portion of a checkerboard, look for tilings of this

checkerboard with various types of polyominoes, includ-
ing dominoes, the two types of triominoes, and larger poly-
ominoes.

Use a computational program or programs you have written to do these exercises.

1. Look for positive integers that are not the sum of the cubes
of nine different positive integers.

2. Look for positive integers greater than 79 that are not the
sum of the fourth powers of 18 positive integers.

3. Find as many positive integers as you can that can be writ-
ten as the sum of cubes of positive integers, in two different
ways, sharing this property with 1729.

*4. Try to find winning strategies for the game of Chomp for

different initial configurations of cookies.

5. Construct the 12 different pentominoes, where a pen-

tomino is a polyomino consisting of five squares.

6. Find all the rectangles of 60 squares that can be tiled using

every one of the 12 different pentominoes.
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Writing Projects

Respond to these with essays using outside sources.

. Discuss logical paradoxes, including the paradox of Epi-

menides the Cretan, Jourdain’s card paradox, and the bar-
ber paradox, and how they are resolved.

. Describe how fuzzy logic is being applied to practical

applications. Consult one or more of the recent books
on fuzzy logic written for general audiences.

. Describe some of the practical problems that can be mod-

eled as satisfiability problems.

. Explain how satisfiability can be used to model a round

robin tournament.

. Describe some of the techniques that have been devised

to help people solve Sudoku puzzles without the use of a
computer.

. Describe the basic rules of WFF’N PROOF, The Game of

Modern Logic, developed by Layman Allen. Give exam-
ples of some of the games included in WFF’N PROOF.

. Read some of the writings of Lewis Carroll on symbolic

logic. Describe in detail some of the models he used to
represent logical arguments and the rules of inference he
used in these arguments.

10.

11.

12.

13.

14.

15.

. Extend the discussion of Prolog given in Section 1.4, ex-

plaining in more depth how Prolog employs resolution.

. Discuss some of the techniques used in computational

logic, including Skolem’s rule.

“Automated theorem proving” is the task of using com-
puters to mechanically prove theorems. Discuss the goals
and applications of automated theorem proving and the
progress made in developing automated theorem provers.
Describe how DNA computing has been used to solve in-
stances of the satisfiability problem.

Look up some of the incorrect proofs of famous open
questions and open questions that were solved since 1970
and describe the type of error made in each proof.
Discuss what is known about winning strategies in the
game of Chomp.

Describe various aspects of proof strategy discussed by
George Pdlya in his writings on reasoning, including
[Po62], [Po71], and [P090].

Describe a few problems and results about tilings with
polyominoes, as described in [Go94] and [Ma91], for
example.



